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Chapter 1EXTERNAL MEMORYDATA STRUCTURESLars ArgeAbstract In many massive dataset applications the data must be stored inspace and query e�cient data structures on external storage devices.Often the data needs to be changed dynamically. In this chapter wediscuss recent advances in the development of provably worst-case e�-cient external memory dynamic data structures. We also briey discusssome of the most popular external data structures used in practice.1. INTRODUCTIONMassive datasets often need to be stored in space e�cient data struc-tures on external storage devices. These structures are used to storea dynamically changing dataset such that queries can be answered e�-ciently. Many massive dataset applications involve geometric data (forexample, points, lines, and polygons) or data which can be interpretedgeometrically. Such applications often perform queries which correspondto searching in massive multidimensional geometric databases for objectsthat satisfy certain spatial constraints. Typical queries include reportingthe objects intersecting a query region, reporting the objects containinga query point, and reporting objects near a query point.While development of practically e�cient (and ideally also multi-purpose) external memory data structures (or indexes) has always beena main concern in the database community, most data structure researchin the algorithms community has focused on worst-case e�cient internalmemory data structures. Recently, however, there has been some cross-�Chapter to appear in Handbook of Massive Datasets, J. Abello, P. M. Pardalos, and M. G.C. Resende (Eds.), Kluwer Academic Publishers, 2001. Draft of July 2001.1



www.manaraa.com

2fertilization between the two areas. In this chapter we discuss recent ad-vances in the development of worst-case e�cient external memory datastructures. We will concentrate on data structures for geometric objectsbut mention other structures when appropriate. We also briey discusssome of the most popular external data structures used in practice.Model of computation. Accurately modeling memory and disk sys-tems is a complex task (Ruemmler and Wilkes 1994). The primaryfeature of disks we want to model is their extremely long access timerelative to that of internal memory. In order to amortize the access timeover a large amount of data, typical disks read or write large blocksof contiguous data at once and therefore the standard two-level diskmodel has the following parameters (Aggarwal and Vitter 1988, Vitterand Shriver 1994, Knuth 1998):N = number of objects in the problem instance;T = number of objects in the problem solution;M = number of objects that can �t into internal memory;B = number of objects per disk block;where B < M < N . An I/O operation (or simply I/O) is the operationof reading (or writing) a block from (or into) disk. Refer to Figure 1.1.Computation can only be performed on objects in internal memory. Themeasures of performance in this model are the number of I/Os used tosolve a problem, as well as the amount of space (disk blocks) used andthe internal memory computation time.Several authors have considered more accurate and complex multi-level memory models than the two-level model. An increasingly popularapproach to increase the performance of I/O systems is to use severaldisks in parallel so work has especially been done in multi disk models.See e.g. the recent survey by Vitter (1999a). We will concentrate onthe two-level one-disk model, since the data structures and data struc-
B

DMPFigure 1.1 Disk model; An I/O moves B contiguous elements between disk and mainmemory (of size M).
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External Memory Data Structures 3ture design techniques developed in this model often work well in morecomplex models. For brevity we will also ignore internal computationtime.Outline of chapter. The rest of this chapter is organized as fol-lows. In Section 2. we discuss the B-tree, the most fundamental (one-dimensional) external data structure, as well as recent variants andextensions of the structure. In Section 3. we illustrate some of theimportant techniques and ideas used in the development of provablyI/O-e�cient data structures for higher-dimensional problems. We do sothrough a discussion of a data structure for the stabbing query problem.In Section 4. we discuss external point location and a general method forobtaining a dynamic data structure from a static one. In Section 5. andSection 6. we discuss data structures for 3-sided and general (4-sided)two-dimensional range searching, respectively, and in Section 7. we sur-vey various extensions of these structures. Section 8. contains a surveyof external data structures for proximity queries, and in Section 10. wediscuss the so-called bu�er trees, which can often be used in I/O-e�cientalgorithms.Several of the worst-case e�cient structures we consider are simpleenough to be of practical interest. Still, there are many good reasons fordeveloping simpler (heuristic) and general purpose structures withoutworst-case performance guarantees, and a large number of such struc-tures have been developed in the database community. Even thoughthe focus of this chapter is on provably worst-case e�cient data struc-tures, in Section 9. we give a short survey of some of the major classes ofsuch heuristic-based structures. The reader is referred to recent surveysfor a more complete discussion (Agarwal and Erickson 1999, Gaede andG�unther 1998, Nievergelt and Widmayer 1997).Throughout the chapter we assume that the reader is familiar withbasic internal memory data structures and design and analysis methods,such as balanced search trees and amortized analysis|see e.g. Cormenet al. (1990).2. B-TREESThe B-tree is the most fundamental external memory data struc-ture (Bayer and McCreight 1972, Comer 1979, Knuth 1998, Huddlestonand Mehlhorn 1982). The B-tree corresponds to an internal memorybalanced search tree. It uses linear space|O(N=B) disk blocks|andsupports insertions and deletions in O(logB N) I/Os. One-dimensionalrange queries, asking for all elements in the tree in a query interval
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4 �(B)�(B) O(logB N)
Figure 1.2 B-tree; All internal nodes (except possibly the root) have fan-out �(B)and there are �(N=B) leaves. The tree has height O(logB N).[q1; q2], can be answered in O(logB N +T=B) I/Os, where T is the num-ber of reported elements.The space, update, and query bounds obtained by the B-tree arethe bounds we would like to obtain in general for more complicatedproblems. The bounds are signi�cantly better than the bounds wewould obtain if we just used an internal memory data structure andvirtual memory. The O(N=B) space bound is obviously optimal and theO(logB N+T=B) query bound is optimal in a comparison model of com-putation. Note that the query bound consists of an O(logB N) search-term corresponding to the familiar O(logN) internal memory search-term,1 and an O(T=B) reporting-term accounting for the O(T=B) I/Osneeded to report T elements. Recently, the above bounds have beenobtained for a number of problems (e.g. Arge and Vitter 1996, Argeet al. 1999b, Vengro� and Vitter 1996, Agarwal et al. 2000b, Calla-han et al. 1995, Govindarajan et al. 2000) but higher lower bounds havealso been established for some problems (Subramanian and Ramaswamy1995, Arge et al. 1999b, Hellerstein et al. 1997, Kanellakis et al. 1996,Koutsoupias and Taylor 1998, Samoladas and Miranker 1998, Kanth andSingh 1999). We discuss these results in later sections.B-trees come in several variants, like B+ and B� trees (see e.g. Bayerand McCreight 1972, Comer 1979, Huddleston and Mehlhorn 1982, Argeand Vitter 1996, Knuth 1998, Agarwal et al. 1999, and their references).A basic B-tree is a �(B)-ary tree (with the root possibly having smallerdegree) built on top of �(N=B) leaves. The degree of internal nodes, aswell as the number of elements in a leaf, is typically kept in the range[B=2 : : : B] such that a node or leaf can be stored in one disk block. Allleaves are on the same level and the tree has height O(logB N)|referto Figure 1.2. In the most popular B-tree variants, the N data elementsare stored in the leaves (in sorted order) and each internal node holds1We use logN to denote log2 N .
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External Memory Data Structures 5�(B) \routing" (or \splitting") elements used to guide searches. Aswe will see in later sections, it can sometimes be useful to use a B-tree with fan-out �(Bc) for some constant 0 < c � 1. If we keep�(N=B) leaves, every such tree will use O(N=B) space and have heightO(logBc N) = O(logB N).To answer a range query [q1; q2] on a B-tree we �rst search downthe tree for q1 and q2 using O(logB N) I/Os, and then we report theelements in the O(T=B) leaves between the leaves containing q1 and q2.We perform an insertion in O(logB N) I/Os by �rst searching down thetree for the relevant leaf l. If there is room for the new element in lwe simply store it there. If not, we split l into two leaves l0 and l00 ofapproximately the same size and insert the new element in the relevantleaf. The split of l results in the insertion of a new routing elementin the parent of l, and thus the need for a split may propagate up thetree. Propagation of splits can often be avoided by sharing some of the(routing) elements of the full node with a non-full sibling. A new (degree2) root is produced when the root splits and the height of the tree growsby one. Similarly, we can perform a deletion in O(logB N) I/Os by �rstsearching for the relevant leaf l and then removing the deleted element.If this results in l containing too few elements we either fuse it with oneof its siblings (corresponding to deleting l and inserting its elements inthe sibling), or we perform a share operation by moving elements froma sibling to l. As splits, fuse operations may propagate up the tree andeventually result in the height of the tree decreasing by one.In internal memory, an N element search tree can be built in optimalO(N logN) time simply by inserting the elements one by one. In externalmemory we would use O(N logB N) I/Os to build a B-tree using thesame method. Interestingly, this is not optimal since Aggarwal andVitter (1988) showed that sorting N elements in external memory takes�(NB logM=B NB ) I/Os. We can build a B-tree in the same bound by �rstsorting the elements and then build the tree level-by-level bottom-up.2.1 B-TREE VARIANTS AND EXTENSIONSRecently, several important variants and extensions of B-trees havebeen considered. In the following we further discuss weight- and level-balanced B-trees, persistent B-trees, as well as string B-trees.Weight-balanced B-trees. The weight-balanced B-tree developed byArge and Vitter (1996) are similar to normal B-trees in that all leavesare on the same level and rebalancing is done by splitting and fusingnodes. However, instead of requiring the degree of a node to be �(Bc),
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6we require the weight (or size) of a node v to be �(Bch) if v is theroot of a subtree of height h. The weight of v is de�ned as the numberof elements in the leaves of the subtree rooted in v. The constraintactually means that v has degree �(Bc) and thus the tree has heightO(logB N). It also means that the children of v are of approximately thesame size �(Bc(h�1)). In normal B-trees their sizes can di�er by a factorexponential in h. Weight-balanced B-trees can be viewed as an externalversion of BB[�]-trees (Nievergelt and Reingold 1973)|however, weight-balanced B-trees have also been used as a simple alternative to BB[�]-trees in internal memory structures (Arge and Vitter 1996).After performing an insertion or deletion in a leaf l of a weight-balanced B-tree the weight constraint may be violated in nodes on thepath from the root to l. In order to rebalance the tree we perform asplit or fuse operation on each of these O(logB N) nodes. A key prop-erty of a weight-balanced B-tree is that after performing a rebalanceoperation (split or fuse) on a weight �(Bch) node v, �(Bch) updateshave to be performed below v before another rebalance operation needsto be performed on v. This means that even if the cost of a rebalanceoperation is O(Bch) I/Os, the amortized complexity of an update re-mains O(logB N). The cost of a rebalance operation could for examplebe O(Bch) if v stores a size �(Bch) secondary structure that needs to berebuilt when v splits (for example, a structure on the �(Bch) elementsbelow v). The property also suggests a simple rebalancing strategy basedon partial-rebuilding (see e.g. Overmars 1983); Instead of splitting or fus-ing nodes on the path from the root to l, we can simply rebuild the treerooted in the highest unbalanced node on this path. Since the (sub-)tree can be rebuilt in a linear number of I/Os we obtain an O(logB N)amortized update bound. Weight-balanced B-trees have been used innumerous e�cient data structures, most recently in an elegant so-calledcache-oblivious B-tree structure by Bender et al. (2000). This structureobtains B-tree-like update and query bounds without explicitly usingthe (possibly unknown) block size B (see also Frigo et al. 1999). We willdiscuss other applications in later sections.Level-balanced B-trees. Apart from the operations discussed above,we sometimes need to be able to perform divide and merge operationson B-trees. A divide operation at element x constructs two trees con-taining all elements less than and greater than x, respectively. A mergeoperation performs the inverse operation. A divide operation can beperformed in O(logB N) I/Os by �rst splitting all nodes on the pathfrom the root to the leaf containing x, constructing two trees, and thenperforming fuse/share operations on the relevant subset of the same
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External Memory Data Structures 7nodes in order to reestablish the B-tree invariant for the two trees. Sim-ilarly, a merge operation can also be performed in O(logB N) I/Os usingO(logB N) split/share operations (Mehlhorn 1984).In some applications we need to be able to traverse a path in a B-treefrom a leaf to the root. To do so we need a parent-pointer from each nodeto its parent. Maintaining such pointers during a rebalance operation(split, fuse or merge) on a node v requires �(B) I/Os since we need toupdate parent pointers of �(B) of v's children. This results in a B-treeupdate, divide, or merge operation taking O(B logB N) I/Os. However,using simple modi�cations of standard B-trees or weight-balanced B-trees, update operations can still be performed in O(logB N) I/Os sinceit can be guaranteed that �(B) updates have to be performed below anode v between rebalance operations on v.Recently, Agarwal et al. (1999) developed a variant of B-trees inwhich divide and merge operations can also be supported I/O-e�cientlywhile maintaining parent pointers. The main idea in the so-called level-balanced B-trees is to use a global balance condition instead of the localdegree or weight conditions used in B-trees or weight-balanced B-trees.More precisely, a constraint is imposed on the number of nodes on eachlevel of the tree. When the constraint is violated the whole subtreeat that level and above is rebuilt. The structure uses O(N=B) space,supports query in O(logB N) I/Os, and update, divide, and merge oper-ations in O(log2B N) I/Os amortized.2 Level-balanced B-trees e.g. haveapplications in dynamic maintenance of planar st-graphs (Agarwal et al.1999).Persistent B-trees. In some database applications we need to beable to update the current database while querying both the currentand earlier versions of the database (data structure). One simple butvery ine�cient way of supporting this functionality is to copy the wholedata structure every time an update is performed. Another and muchmore e�cient way is through the (partially) persistent technique (Sarnakand Tarjan 1986, Driscoll et al. 1989), also sometimes referred to as themultiversion method (Becker et al. 1996, Varman and Verma 1997).Instead of making copies of the structure, the idea in this technique isto maintain one structure at all times but for each element keep trackof the time interval at which it is really present in the structure. A B-tree can be made persistent as follows: Each data element is augmentedwith an existence interval consisting of the time at which the elementwas inserted and (possibly) the time at which it was deleted. We say2The precise bounds are actually slightly better and more complicated (Agarwal et al. 1999).
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8that an element is alive in its existence interval. All elements are storedin a slightly modi�ed B-tree where we also associate a node existenceinterval with each node. Apart from the normal B-tree constraint onthe number of elements in a node, we also maintain that a node contains�(B) alive elements in its existence interval. This means that for a giventime t, the nodes with existence intervals containing t make up a B-treeon the elements alive at that time. Thus we can perform range queriesin O(logB N + T=B) on any version (at any time) of the tree as usual(remembering to disregard dead elements in the visited nodes). Here Nis the number of updates performed.An insertion in a persistent B-tree is performed almost like a normalinsertion. We �rst �nd the relevant leaf l and if there is room for it weinsert the new elements. Otherwise we have an overow and to handlethis we �rst copy all alive elements in l and make the current time theendpoint of the existence interval of l (corresponding to deleting l at thecurrent time). Depending on how many elements we copied, we eitherconstruct one new leaf on them, split them into two equal size groupsand construct two new leaves on them, or we copy the alive elementsfrom one of l's siblings and construct one or two leaves out of all thecopied elements|this corresponds to performing split or fuse operationson the alive elements in l and its sibling. In all cases we make sure thatthere is room for �(B) future updates in each of the new leaves. Wethen insert the new element in the relevant leaf and set the start timeof the existence interval of all new leaves to the current time. Finally,we insert references to the new leaves in l's parent and (persistently)delete the reference to l. This may result in similar overow operationscascading up one path to the root of the structure.In order to perform a deletion we �rst update the existence interval ofthe relevant element in leaf l. As the element is not deleted, we do notneed to perform a fuse operation as in a normal B-tree. However, thedeletion may result in l containing less than the minimum allowed num-ber of alive elements. If this is the case we copy the alive elements froml and one of its siblings and construct one or two new leaves as duringan insertion. We also update the references in l's parent as previously,possibly resulting in similar updates up one path of the tree.Both insertions and deletions can be handled in O(logB N) I/Os sincein both cases we touch a constant number of nodes on the O(logB N)level of the structure. In total we construct O(N=B) leaves since weconstruct O(1) new leaves only when �(B) updates have been performedon an existing leaf. A similar argument can be applied to the nodes oneach level of the tree and thus we can prove that the structure usesO(N=B) space in total.
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External Memory Data Structures 9Several times in later sections we will construct a data structure byperforming N insertion and deletions on an initially empty persistentB-tree, and then use the resulting (static) structure to answer queries.Using the above update algorithms, the construction takes O(N logB N)I/Os. Utilizing the distribution-sweeping technique, Goodrich et al.(1993) showed how to construct the structure (perform the N updateswithout doing queries) more e�ciently in O(NB logM=B NB ) I/Os. Theirmethod requires that every pair of elements in the structure can becompared|even a pair of elements not present in the structure at thesame time. Unfortunately, as we will see in later sections, when workingwith geometric objects (such as line segments) we will not always be ableto compare any two elements. It should be noted that the O(N logB N)construction algorithm|that is, the update algorithm described above|also requires every pair of elements to be comparable, since elements canbe used as routing elements in the internal nodes of the structure longafter they have been deleted. Thus when performing an update or querywith element e at time t, we might have to compare e with elements notalive at time t. However, by storing data elements in all nodes of the tree(not just the leaves) and using slightly di�erent update algorithms, wecan eliminate this problem such that the O(N logB N) algorithm onlycompares elements present in the structure at the same time (Arge andTeh 2000).String B-trees. In the B-tree variants discussed so far, the elements|and thus the routing elements in internal nodes|have been of unit size.In string applications a data element (string of characters) can oftenbe arbitrarily long or di�erent elements can be of di�erent length. Thismeans that we cannot use the strings as routing elements and at the sametime maintain a large fan-out of internal nodes. We could store pointersto strings in the internal nodes and obtain fan-out �(B) but searchingwould then be ine�cient since we could be forced to perform a lot ofI/Os to route a query through a node. Ferragina and Grossi (1995) (seealso Ferragina and Grossi 1996) recently presented an elegant solutionto this problem called the string B-tree. From a high-level point of view,a string B-tree on K strings of total length N is just a B-tree built on Npointers to the N su�xes of the K strings in lexicographical order. Toroute a query string q through the �(B) string pointers in an internalnode, each such node contains a blind trie data structure. A blind trie isa variant of the compacted trie (Knuth 1998, Morrison 1968), which �tsin one disk block. Routing q through a node v requires one I/O to loadthe blind trie, as well as some extra I/Os to scan parts of q and the stringscorresponding to the pointers stored in v. However, since the scanned
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10parts of q correspond to parts which will not be scanned again furtherdown the tree, we can charge the I/Os to those parts of q and obtainan optimal O(logB N + jqj=B) search bound. Ferragina and Grossi alsoshowed how to insert or delete a string q inO(jqj logB N) I/Os amortized.Other results on string B-trees and external string processing have beenobtained by Crauser and Ferragina (1999), Ferragina and Luccio (1998),Farach et al. (1998) and Arge et al. (1997).3. INTERVAL MANAGEMENTAfter considering the one-dimensional B-trees, we now turn to datastructures for more complicated and higher-dimensional problems likerange searching. In internal memory many elegant data structures havebeen developed for such problems|see e.g. the recent survey by Agar-wal and Erickson (1999). Unfortunately, most of these structures arenot e�cient when mapped to external memory|mainly because theyare normally based on binary trees. The main challenge when develop-ing e�cient external structures is to use B-trees as base structures, thatis, to use multiway trees instead of binary trees. Recently, some progresshas been made in the development of provably I/O-e�cient data struc-tures based on multi-way trees. In this section we illustrate some ofthe techniques and ideas used in the development of these structuresthrough the stabbing query problem. The stabbing query problem is theproblem of maintaining a dynamically changing set of (one-dimensional)intervals such that given a query point q all intervals containing q canbe reported e�ciently.The static version of the stabbing query problem (the set of intervalsis �xed) can easily be solved I/O-e�ciently using a sweeping idea and apersistent B-tree (Arge et al. 1999b, Chazelle 1986, Ramaswamy 1997).To illustrate this, consider sweeping N intervals along the x-axis startingat �1, inserting each interval in a B-tree when its left endpoint isreached and deleting it again when its right endpoint is reached. Toanswer a stabbing query with q we simply have to report all intervals inthe B-tree at \time" q|refer to Figure 1.3. Thus following the discussionin Section 2., the structure uses O(N=B) space and can be constructedin O(NB logM=B NB ) I/Os. Queries can be answered in O(logB N + T=B)I/Os.Following earlier attempts of Kanellakis et al. (1996) (see also Sub-ramanian and Ramaswamy 1995, Ramaswamy and Subramanian 1994,Blankenagel and G�uting 1990, Icking et al. 1987), a dynamic structurefor the problem was developed by Arge and Vitter (1996). This structurecan be viewed as an external version of the interval tree (Edelsbrunner
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External Memory Data Structures 11
qFigure 1.3 Static solution to stabbing query problem using persistence.1983a;b). It consists of a fan-out �(pB) weight-balanced B-tree T onthe endpoints of the intervals (the base tree), with the intervals stored insecondary structures associated with the internal nodes of T as describedbelow. A range Xv (containing all points below v) can be associated witheach node v in a natural way. This range is subdivided into �(pB) sub-ranges associated with the children of v. For illustrative purposes we callthe subranges slabs and the left (right) endpoint of such a slab a slabboundary. Refer to Figure 1.4. The �(pB2) = �(B) contiguous setsof slabs are called multislabs. An example of a multislab is Xv2Xv3 inFigure 1.4. We assign an interval I to the node v where I contains oneor more of the slab boundaries of v but not any of the slab boundariesassociated with v's parent. Each node v of T contains �(B) secondarystructures used to store the set of intervals Iv assigned to v; a left slablist and a right slab list for each of the �(pB) slabs, a multislab listfor each of the �(B) multislabs, as well as an underow structure. Aright slab list contains intervals from Iv with the right endpoint in thecorresponding slab, sorted according to the right endpoint. Similarly, aleft slab list contains intervals with the left endpoint in a slab, sortedaccording to the left endpoint. A multislab list stores intervals whichspan the corresponding multislab but not any wider multislab. If thenumber of intervals stored in a multislab list is less than B we insteadstore them in the underow structure. This means that the underowvv1 v2 v3 v4 v5Xv2 Xv3 Xv4 Xv5sXv1 Xv qFigure 1.4 Node v in base tree of external in-terval tree. The range Xv associated with v isdivided into 5 slabs. Figure 1.5 Querying a nodewith q.
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12structure contains O(B2) intervals. An interval is thus stored in at mostthree structures; two slab lists and possibly in a multislab list or theunderow structure. For example, interval s in Figure 1.4 is stored inthe left slab list of the �rst slab and in the right slab list of the fourthslab, as well as in the multislab list corresponding to the second andthird slab. Thus the structure uses O(N=B) space.In order to answer a stabbing query q we search down T for the leafcontaining q, reporting all the relevant intervals among the intervalsstored in secondary structures of the node we pass. In node v we reportall intervals in multislab lists containing q, as well as all intervals inthe underow structure containing q. We also traverse and report theintervals in the right (left) slab list of the slab containing q from thelargest toward the smallest|according to right (left) endpoint|untilwe meet an interval that does not contain q. No other intervals in thelist can contain q|refer to Figure 1.5. If Tv is the number of intervalsreported in v we use O(Tv=B) I/Os to report intervals from the slaband multislab lists. There is no O(logB N)-term since we do not searchin any of the lists. If we implement the underow structure using thestatic structure based on a persistent B-tree described above, we canalso �nd the relevant intervals in this structure in O(logB B2+Tv=B) =O(1+Tv=B) I/Os. Since there are O(logB N) nodes on the search path,we in total use O(Pv(1 + Tv=B)) = O(logB N + T=B) I/Os to answer aquery.To insert a new interval we �rst use O(logB N) I/Os to search downT for the node where the interval needs to be inserted in secondarystructures. In this node we insert the interval in a left and right slablist and possibly in a multislab list. If these lists are implemented usingB-trees we can do so in O(logB N) I/Os. We may also need to insert theinterval in the underow structure. The structure is static but since ithas size O(B2) we can use a global rebuilding idea to make it dynamic(Overmars 1983); we simply store the update in a special \update block"and once B updates have been collected we rebuild the structure usingO(B2B logM=B B2B ) I/Os. Assuming M > B2, that is, that the internalmemory is capable of holding B blocks, this is O(B) and we obtainan O(1) amortized update bound. Arge and Vitter (1996) have shownhow to make this worst-case, even without the assumption on the mainmemory size. To complete the insertion, we also need to insert the newendpoints in the base tree T and rebalance the tree using split and shareoperations. Performing split or share operations may be costly sincethey result in the need for restructuring of the secondary structures.However, since this restructuring can be performed in a linear numberof I/Os in the size of the secondary structures and as T is implemented as
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External Memory Data Structures 13a weight-balanced B-tree (Section 2.), we can obtain an O(1) amortizedI/O bound for a rebalance operation. Thus in total we can perform aninsertion in O(logB N) I/Os amortized. The bound can even be madeworst-case using standard lazy rebuilding techniques. Deletions can behandled in O(logB N) I/Os in a similar way. Variants of the externalinterval tree structure|as well as experimental results on applications ofit in isosurface extraction3|have been considered by Chiang and Silva(Chiang and Silva 1997, Chiang et al. 1998, Chiang and Silva 1999).The above solution to the stabbing query problem illustrates many ofthe problems encountered when developing I/O-e�cient dynamic datastructures, as well as the techniques commonly used to overcome theseproblems. As already discussed, the main problem is that in order tobe e�cient, external tree data structures need to have large fan-out. Inthe above example this resulted in the need for what we called multi-slabs. To handle multislabs e�ciently we used the notion of underowstructure, as well as the fact that we could decrease the fan-out of Tto �(pB) while maintaining the O(logB N) tree height. The underowstructure|implemented using sweeping and a persistent B-tree|solveda static version of the problem on O(B2) interval in O(1 + Tv=B) I/Os.The structure was necessary since if we had just stored the intervals inmultislab lists we might have ended up spending �(B) I/Os to visit the�(B) multislab lists of a node without reporting more than O(B) inter-vals in total. This would have resulted in an 
(B logB N + T=B) querybound. We did not store intervals in multislab lists containing 
(B) in-tervals in the underow structure, since the I/Os spent on visiting suchlists during a query can always be charged to the O(Tv=B)-term in thequery bound. The idea of charging some of the query cost to the out-put size is often called �ltering (Chazelle 1986), and the idea of usinga static structure on O(B2) elements in each node has been called thebootstrapping paradigm (Vitter 1999a;b). Finally, the ideas of weight-balancing and global rebuilding were used to obtain worst-case e�cientupdate bounds. In Section 5. we will discuss another example of the useof all the above ideas.4. PLANAR POINT LOCATIONThe planar point location problem is de�ned as follows: Given a pla-nar subdivision with N vertices (i.e., a decomposition of the plane intopolygonal regions induced by a straight-line planar graph), construct a3Based on a sweeping idea and a persistent list, Agarwal et al. (1998) described an e�cientstatic structure for terrain contour line extraction.
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14data structure so that the face containing a query point p = (x; y) canbe reported e�ciently. We will concentrate on the problem of �ndingthe �rst segment of the subdivision hit by a vertical ray emanating at p(a vertical ray shooting query)|refer to Figure 1.6. After answering thisquery, the face containing the query point can easily be found (Overmars1985).In internal memory, a lot of work has been performed on the pointlocation problem|see e.g. the survey by Snoeyink (1997). Sarnak andTarjan (1986) presented a very simple solution to the static problembased on persistence. Their solution is similar to the static solution tothe interval management problem discussed in the previous section. Itis based on the fact that a vertical line l imposes a natural order onthe segments in the subdivision intersected by l. This means that if wesweep the subdivision from left the right (�1 to1) with a vertical line,inserting a segment in a persistent search tree when its left endpoint isencountered and deleting it again when its right endpoint is encountered,we can answer a point location query p = (x; y) by searching for theposition of y in the tree at \time" x. Note that in this method theelements (segments) present in the persistent structure at di�erent timescannot necessarily be compared. As discussed in Section 2., this meansthat we cannot use the O(NB logM=B NB ) algorithm of Goodrich et al.(1993) to construct the same structure in external memory but have touse the less e�cient O(N logB N) I/O algorithm. However, we do obtaina linear space external point location data structure that answers queriesin O(logB N) I/Os. Goodrich et al. (1993) discussed another O(logB N)query data structure based on a parallel fractional cascading techniqueby Tamassia and Vitter (1996). They did not analyze how many I/Os areneeded to construct the structure. Several structures which can answera batch of queries I/O-e�ciently have also been proposed (Goodrichet al. 1993, Arge et al. 1995; 1998, Crauser et al. 1998, Vahrenhold andHinrichs 2000)
p

��

vv1 v2 v3 v4 v5
Figure 1.6 Vertical rayshooting query with p. Figure 1.7 Answering a query on segments inIv. Answer can be in two slab lists and O(B)multislab lists.



www.manaraa.com

External Memory Data Structures 15Recently, progress has been made in the development of I/O-e�cientdynamic point location structures. In the dynamic problem we canchange the subdivision dynamically (insert and delete edges/segmentsand vertices). Agarwal et al. (1999) developed a dynamic structure formonotone subdivisions and Arge and Vahrenhold (2000) developed astructure for the general problem. Both structures are based on theexternal interval tree structure described in the previous section. Themain idea is to store the segments of the subdivision (or rather theirprojection onto the x-axis) in a structure very similar to an intervaltree. Doing so a query with p = (x; y) can be answered similarly to astabbing query with x, except that in each node v visited by the queryprocedure a ray shooting query is answered on the segments in Iv. Theglobal ray shooting query can then be answered by choosing the lowestsegment among the O(logB N) segments found this way. We can answera query on the segments in Iv by answering the query on the segments intwo slab lists and O(B) multislab lists (refer to Figure 1.7). Using ideasalso utilized in several internal memory structures (Cheng and Janar-dan 1992, Baumgarten et al. 1994), we can answer queries on the slablists in O(logB N) I/Os with a slightly modi�ed B-tree (Agarwal et al.1999). It is also easy to answer a ray shooting query on a multislab listin O(logB N) I/Os using a B-tree storing the segments in y-order. How-ever, if we query each of the �(B) multislab lists individually we willend up using O(B logB N) I/Os to answer the query in v. Agarwal et al.(1999) improved this to O(logB N), obtaining an overall query bound ofO(log2B N), by storing the segments in all multislab lists in one combinedstructure as described below.Given two segments in the same multislab list we can easily determinewhich segment is above the other (formally a segment s is above a seg-ment t if there exists a vertical line l intersecting both s and t such thatthe intersection between l and s is above the intersection between l andt). On the other hand, two segments in di�erent multislab lists mightnot be comparable (if they cannot be intersected by the same verticalline) and therefore we cannot just build a B-tree on the segments in allmultislab lists of a node v and use that to answer a query. Agarwal et al.(1999) used the fact that the segments only have endpoints on �(pB)di�erent lines (we imagine cutting the segments in the multislabs at slabboundaries) to construct an e�cient structure. They also used that, asshown by Arge et al. (1995), N segments in the plane can be sorted inO(NB logM=B NB ) I/Os|a set of segments is sorted if for any two com-parable segments s and t, if s is above t then s appears after t in thesorted order. More precisely, the multislab list structure is constructedas follows: Let R denote the sorted set of multislab segments in a node.
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16We �rst construct a fan-out pB B-tree on R. For a node w in the tree,let Rw denote the subsequence of R stored in the subtree rooted at w.To guide the processing of queries, we store certain segments of Rw ineach internal node w; let w1; : : : ; wpB denote the children of an internalnode w. For 1 � i; j � pB, we de�ne �ij to be the maximal segment ofRwi that intersects the jth vertical slab. We store all �(B) segments �ijat w in O(1) blocks. In this way the structure requires O(N=B) spaceand can be constructed in O(NB logM=B NB ) I/Os. To answer a query withp = (x; y), we follow a path from the root to a leaf z of the B-tree sothat Rz contains the result of the query. At each node w visited by theprocedure we do the following: If p lies in the interior of the rth slab,we de�ne Ew = f�ir j 1 � i � pBg. The de�nition of �ij ensures thatif �ir is the �rst (lowest) segment of Ew intersected by an upward rayemanating in p, then the tree rooted at wi contains the �rst segmentof R hit by an upward ray emanating in p. We therefore visit wi next.In this way a query can be answered in O(logB N) I/Os. One way ofthinking of the multislab list structure is as a fan-out pB B-tree foreach of the pB slabs, all stored in the same structure; When answeringa query in the rth slab, Ew of all nodes make up a fan-out pB B-treeon the segments intersecting the slab.The main problem in making the above point location structure dy-namic is making the multislab list structure dynamic. The problem isthat inserting a new segment may change the total order R consider-ably; refer to Figure 1.8. Agarwal et al. (1999) used special features ofmonotone subdivisions to limit such changes and obtained an O(log2B N)multislab list structure update bound. This is also the global updatebound since only one multislab list structure needs to be updated whenperforming an insertion or deletion and since the rest of the structure canbe easily updated in O(logB N) I/Os using standard B-tree and weight-balanced B-tree techniques. Arge and Vahrenhold (2000) extended thestructure to work for general subdivisions. To do so they used a newgeneral dynamization technique discussed in the next subsection. Usingthis method on the multislab list structure they �rst developed a dy-
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Figure 1.8 Inserting a new segment may change total order signi�cantly. b) Originalsegments. a) and c) illustrate di�erent insertions and resulting total orders.
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External Memory Data Structures 17namic version of this structure, which supports updates in O(logB N)I/Os and answers queries in O(log2B N) I/Os. Using a technique similarto fractional cascading (Chazelle and Guibas 1986, Mehlhorn and N�aher1990) they improved the query performance to O(logB N), obtaining alinear space point location structure supporting updates and queries inO(log2B N) I/Os.4.1 THE LOGARITHMIC METHODThe general method for transforming a static external memory datastructure into an e�cient dynamic structure is an external version ofthe logarithmic method (Bentley 1979) (see also Overmars 1983). Ininternal memory, the main idea in this method is to partition the setof N elements into logN subsets of exponentially increasing size 2i,i = 0; 1; 2; : : : , and build a static structure Di for each of these subsets.Queries are then performed by querying each Di and combining theanswers, while insertions are performed by �nding the �rst empty Di,discarding all structures Dj , j < i, and buildingDi from the new elementand the Pi�1l=0 2l = 2i � 1 elements in the discarded structures.To make the logarithmic method I/O-e�cient we need to decrease thenumber of subsets to logB N , which in turn means increasing the size ofDi to Bi. When doing so Dj , j < i, does not contain enough objectsto build Di (since 1 +Pi�1l=0 Bl < Bi). However, it turns out that ifwe can build a static structure I/O-e�ciently enough, this problem canbe resolved and we can make a modi�ed version of the method work inexternal memory. Consider a static structure D that can be constructedin O(NB logB N) I/Os and that answers queries in O(logB N) I/Os (notethat O(NB logM=B NB ) = O(NB logB N) if M > B2). We partition theN elements into logB N sets such that the ith set has size less thanBi + 1 and construct an external memory static data structure Di foreach set|refer to Figure 1.9. To answer a query, we simply query each
< B+1

2
< B+1

3
< B+1

i
< B+1Figure 1.9 Logarithmic method; logB N structures|Di contains less than Bi + 1elements. D1;D2; : : : ;Dj do not contain enough elements to build Dj+1 of size Bj+1.
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18Di and combine the results using O(PlogB Nj=1 logB jDj j) = O(log2B N)I/Os. We perform an insertion by �nding the �rst structure Di suchthat Pij=1 jDj j � Bi, discarding all structures Dj, j � i, and building anewDi from the elements in these structures using O((Bi=B) logB Bi) =O(Bi�1 logB N) I/Os. Now because of the way Di was chosen, we knowthat Pi�1j=1 jDj j > Bi�1, which means that at least Bi�1 objects aremoved from lower indexed structures to Di. If we divide the Di con-struction cost between these objects, each object is charged O(logB N)I/Os. Since an object never moves to a lower indexed structure wecan at most charge it O(logB N) times during N insertions. Thus theamortized cost of an insertion is O(log2B N) I/Os. Note that the key tomaking the method work is that the factor of B we lose when chargingthe construction of a structure of size Bi to only Bi�1 objects is o�set bythe 1=B factor in the construction bound. Arge and Vahrenhold (2000)show how deletions can also be handled I/O-e�ciently using a globalrebuilding idea.5. 3-SIDED PLANAR RANGE SEARCHINGIn Section 3. we discussed the stabbing query problem. This problemis equivalent to performing diagonal corner queries|a special case of 2-sided range queries|on a set of points in the plane. Consider mappingan interval [x; y] to the point (x; y) in the plane. Finding all intervalscontaining a query point q then corresponds to �nding all points (x; y)such that x � q and y � q. Refer to Figure 1.10. In this section weconsider the more general 3-sided planar range searching problem: Givena set of points in the plane the solution to a 3-sided query (q1; q2; q3)consists of all points (x; y) with q1 � x � q2 and y � q3. Refer toFigure 1.11.Following several earlier attempts (Ramaswamy and Subramanian1994, Subramanian and Ramaswamy 1995, Blankenagel and G�uting 1990,Icking et al. 1987), Arge et al. (1999b) developed an optimal dynamicstructure for the 3-sided planar range searching problem. The structure
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External Memory Data Structures 19uses many of the ideas already discussed for the interval tree structure inSection 3.: Bootstrapping using a static structure, �ltering, and a weight-balanced B-tree. In fact, the I/O-optimal static solution to the problemcan be obtained using the same persistence idea as the one used in theinterval case. This time we imagine sweeping the plane with a horizontalline from y = 1 to y = �1 and inserting the x-coordinate of pointsin a persistent B-tree as they are met. To answer a query (q1; q2; q3) weperform a one-dimensional range query [q1; q2] on the B-tree at \time"q3. Following the discussion in Section 2., the structure obtained thisway uses linear space and queries can be answered in O(logB N + T=B)I/Os. It can be constructed in O(NB logM=B NB ) I/Os.Using the static solution and the general dynamization method dis-cussed in the previous section, we can immediately obtain a dynamicsolution to the problem with O(log2B N) query and update bounds. Theoptimal dynamic structure however is an external version of the inter-nal memory priority search tree structure (McCreight 1985). Like theexternal interval tree, the external priority search tree consists of a baseB-tree on the x-coordinates of the points. As previously, each internalnode corresponds naturally to an x-range, which is divided into �(B)slabs by the x-ranges of its children. In each node v we store O(B) pointsfor each of v's �(B) children vi, namely the B points with the highesty-coordinates in the x-range of vi (if existing) that have not been storedin ancestors of v. We store the O(B2) points in the linear space staticstructure discussed above (the \O(B2){structure") such that a 3-sidedquery on them can be answered in O(T=B) I/Os. As in Section 3., wecan update the O(B2){structure in O(1) I/Os using an \update block"and a global rebuilding technique. Since every point is stored in preciselyone O(B2){structure, the structure uses O(N=B) space in total.To answer a 3-sided query (q1; q2; q3) we start at the root of the ex-ternal priority search tree and proceed recursively to the appropriatesubtrees; when visiting a node v we query the O(B2){structure and re-port the relevant points, and then we advance the search to some of thechildren of v. The search is advanced to child vi if vi is either alongthe leftmost search path for q1 or the rightmost search path for q2, or ifthe entire set of points corresponding to vi in the O(B2){structure werereported|refer to Figure 1.12. The query procedure reports all pointsin the query range since if we do not visit child vi corresponding to aslab completely spanned by the interval [q1; q2], it means that at leastone of the points in the O(B2){structure corresponding to vi does notsatisfy the query. This in turn means that none of the points in the sub-tree rooted at vi can satisfy the query. That we use O(logB N + T=B)I/Os to answer a query can be seen as follows. In every internal node
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1 2Figure 1.12 Internal node v with children v1, v2, : : : , v5. The points in bold arestored in the O(B2){structure. To answer a 3-sided query we report the relevant ofthe O(B2) points and answer the query recursively in v2, v3, and v5. The query is notextended to v4 because not all of the points from v4 in the O(B2){structure satisfythe query.
v visited by the query procedure we spend O(Tv=B) I/Os, where Tv isthe number of points reported. There are O(logB N) nodes visited onthe search paths in the tree to the leaf containing q1 and the leaf con-taining q2 and thus the number of I/Os used in these nodes adds upto O(logB N + T=B). Each remaining visited internal node v is not onthe search path but it is visited because �(B) points corresponding toit were reported when we visited its parent. Thus the cost of visitingthese nodes adds up to O(T=B), even if we spend a constant number ofI/Os in some nodes without �nding �(B) points to report. Note howwe again are using the �ltering idea, that is, we are are charging someof our search cost to the points we output as a result of the query.To insert a point p = (x; y) in the external priority search tree wesearch down the tree for the leaf containing x, until we reach the nodev where p needs to be inserted in the O(B2){structure. Insertion of p inv (may) result in the O(B2){structure containing one too many pointsfrom the slab corresponding to the child vj containing x. Therefore,apart from inserting p in the O(B2){structure, we also remove the pointp0 with the lowest y-coordinate among the points corresponding to vj .We insert p0 recursively in the tree rooted in vj. Since we use O(1) I/Osin each of the nodes on the search path, the insertion takes O(logB N)I/Os. We also need to insert x in the base B-tree. This may resultin split and/or fuse operations and each such operation may requirerebuilding an O(B2){structure. Using weight-balanced B-tress, Argeet al. (1999b) showed how the rebalancing after an insertion can beperformed in O(logB N) I/Os worst case. Deletions can be handled inO(logB N) I/Os in a similar way.
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External Memory Data Structures 216. GENERAL 2D RANGE SEARCHINGAfter discussing 2- and 3-sided planar range queries we are now readyto consider general (4-sided) range queries. Given a set of points in theplane we want to be able to �nd all points contained in a query rect-angle. While linear space and O(logB N + T=B) query structures existfor the two special cases, Subramanian and Ramaswamy (1995) provedthat one cannot obtain an O(logB N + T=B) query bound using lessthan �(N=B log(N=B)log logB N ) disk blocks.4 This lower bound holds in a naturalexternal memory version of the pointer machine model (Chazelle 1990).A similar bound in a slightly di�erent model where the search compo-nent of the query is ignored was proved by Arge et al. (1999b). Thisindexability model was de�ned by Hellerstein et al. (1997) and consid-ered by several authors (Kanellakis et al. 1996, Koutsoupias and Taylor1998, Samoladas and Miranker 1998). Note that linear space and loga-rithmic query structures for the range counting problem (where only thenumber of points in the query rectangle, and not the points themselves,need to be reported) can be developed in a slightly di�erent model ofcomputation (see Agarwal et al. 2001a, Zhang et al. 2001, and referencestherein).Based on a sub-optimal linear space structure for answering 3-sidedqueries, Subramanian and Ramaswamy (1995) developed the P-rangetree that uses optimal O(N=B log(N=B)log logB N ) space but uses more than the op-timal O(logB N + T=B) I/Os to answer a query. Using their optimalstructure for 3-sided queries, Arge et al. (1999b) obtained an optimalstructure. We discuss the structure below. In practical applications in-volving massive datasets it is often crucial that external data structuresuse linear space. We discuss this further in Section 9. Grossi and Ital-iano (Grossi and Italiano 1999a;b) developed the elegant linear spacecross-tree data structure which answers queries in O(pN=B + T=B)I/Os. This is optimal for linear space data structures|as e.g. proven byKanth and Singh (1999). The O-tree of Kanth and Singh (1999) obtainsthe same bounds using ideas similar to the ones used by van Kreveldand Overmars (1991) in divided k-d trees. Below, after discussing theO(logB N+T=B) query structure, we also discuss the cross-tree further.Logarithmic query structure. The O(logB N + T=B) query datastructure is based on ideas from the corresponding internal memory datastructure due to Chazelle (1986). It uses both the external interval treediscussed in Section 3. and the external priority search tree discussed4In fact, this bound even holds for a query bound of O(logcB N + T=B) for any constant c.
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22in Section 5. The structure consists of a fan-out logB N base tree overthe x-coordinates of the N points. As usual an x-range is associatedwith each node v and it is subdivided into logB N slabs by v's chil-dren v1; v2; : : : ; vlogB N . We store all the points in the x-range of v infour secondary data structures associated with v. Two of the structuresare priority search trees for answering 3-sided queries|one for answer-ing queries with the opening to the left and one for queries with theopening to the right. We also store the points in a linear list sortedby y-coordinate. For the fourth structure, we imagine linking togetherfor each child vi the points in the x-range of vi in y-order, producing apolygonal line monotone with respect to the y-axis. We project all thesegments produced in this way onto the y-axis and store them in an ex-ternal interval tree. With each segment endpoint we also store a pointerto the corresponding point in a child node. Since we use linear space oneach of the O(loglogB N (N=B)) = O(log(N=B)= log logB N) levels of thetree, the structure uses O(N=B log(N=B)log logB N ) disk blocks in total.To answer a 4-sided query q = (q1; q2; q3; q4) we �rst �nd the topmostnode v in the base tree where the x-range [q1; q2] of the query containsa slab boundary. Consider the case where q1 lies in the x-range of viand q2 lies in the x-range of vj|refer to Figure 1.13. The query q isnaturally decomposed into three parts, consisting of a part in vi, a partin vj , and a part completely spanning nodes vk, for i < k < j. Thepoints contained in the �rst two parts can be found in O(logB N+T=B)I/Os using the 3-sided structures corresponding to vi and vj . To �ndthe points in the third part we query the interval tree associated with v
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pN=B pN=Bq1pNBpointsFigure 1.13 The slabs correspondingto a node v in the base tree. To an-swer a query (q1; q2; q3; q4) we need toanswer 3-sided queries on the points inslab vi and slab vj , and a range queryon the points in slabs between vi andvj .

Figure 1.14 Basic squares. To an-swer a query (q1; q2; q3; q4) we checkpoints in two vertical and two hori-zontal slabs, and report points in ba-sic squares completely covered by thequery.
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External Memory Data Structures 23with the y-value q2. This way we obtain the O(logB N) segments in thestructure containing q2, and thus (a pointer to) the bottommost pointcontained in the query for each of the nodes vi+1, vi+2; : : : ; vj�1. Wethen traverse the j � i� 1 = O(logB N) relevant sorted lists and outputthe remaining points using O(logB N + T=B) I/Os.To insert or delete a point, we need to perform O(1) updates on eachof the O(log(N=B)= log logB N) levels of the base tree. Each of theseupdates takes O(logB N) I/Os. We also need to update the base tree.Using a weight-balanced B-tree, Arge et al. (1999b) showed how this canbe done in O((logB N)(log NB )= log logB N) I/Os.Linear space structure. The linear space cross-tree structure ofGrossi and Italiano (Grossi and Italiano 1999a;b) consists of two lev-els. The lower level partitions the plane into �(pN=B) vertical slabsand �(pN=B) horizontal slabs containing �(pNB) points each, form-ing an irregular grid of �(N=B) basic squares|refer to Figure 1.14.Each basic square can contain between 0 andpN=B points. The pointsare grouped and stored according to the vertical slabs|points in verti-cally adjacent basic squares containing less than B points are groupedtogether to form groups of �(B) points and stored in blocks together.The points in a basic square containing more than B points are stored ina B-tree. Thus the lower level uses O(N=B) space. The upper level con-sists of a linear space search structure which can be used to determinethe basic square containing a given point|for now we can think of thestructure as consisting of a fan-out pB B-tree TV on the pN=B verti-cal slabs and a separate fan-out pB B-tree TH on thepN=B horizontalslabs.In order to answer a query (q1; q2; q3; q4) we use the upper level searchtree to �nd the vertical slabs containing q1 and q3 and the horizontalslabs containing q2 and q4 using O(logB N) I/Os. We then explicitlycheck all points in these slabs and report all the relevant points. Indoing so we use O(pNB=B) = O(pN=B) I/Os to traverse the verti-cal slabs and O(pNB=B +pN=B) = O(pN=B) I/Os to traverse thehorizontal slabs (the pN=B-term in the latter bound is a result of theslabs being blocked vertically|a horizontal slab contains pN=B basicsquares). Finally, we report all points corresponding to basic squaresfully covered by the query. To do so we use O(pN=B + T=B) I/Ossince the slabs are blocked vertically. In total we answer a query inO(pN=B + T=B) I/Os.In order to perform an update we need to �nd and update the relevantbasic square. We may also need to split slabs (insertion) or merge slabs
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24with neighbor slabs (deletions). In order to do so e�ciently while stillbeing able to answer a range query I/O-e�ciently, the upper level isactually implemented using a cross-tree THV . THV can be viewed as across product of TV and TH : For each pair of nodes u 2 TH and v 2 TVon the same level we have a node (u; v) in THV , and for each pair of edges(u; u0) 2 TH and (v; v0) 2 TV we have an edge ((u; v); (u0; v0)) in THV .Thus the tree has fan-out O(B) and usesO((pN=B)2) = O(N=B) space.Grossi and Italiano (Grossi and Italiano 1999a;b) showed how we can usethe cross-tree to search for a basic square in O(logB N) I/Os and how thefull structure can be used to answer a range query in O(pN=B + T=B)I/Os. They also showed that if TH and TV are implemented using weight-balanced B-trees, the structure can be maintained in O(logB N) I/Osduring an update.7. SPECIAL AND HIGHER-DIMENSIONALRANGE SEARCHINGAs we have seen in the preceding sections, two-dimensional externalrange searching is theoretically relatively well understood. In contrast,little theoretical work has been done on higher-dimensional range search-ing and on special cases of higher-dimensional range searching. In thissection we survey such results.Range searching. Vengro� and Vitter (1996) presented a data struc-ture for 3-dimensional range searching with a logarithmic query bound.With recent modi�cations (Vitter 1999a) their structure answers queriesin O(logB N+T=B) I/Os and uses O(NB log3 NB = log log3B N) space. Moregenerally, they presented structures for answering (3 + k)-sided queries(k of the dimensions, 0 � k � 3, have �nite ranges) in O(logB N +T=B)I/Os using O(NB logk NB = log logkB N) space.As mentioned, space use is often as crucial as query time when ma-nipulating massive datasets. The linear space cross-tree of Grossi andItaliano (Grossi and Italiano 1999a;b), as well as the O-tree of Kanth andSingh (1999), can be extended to support d-dimensional range queriesin O((N=B)1�1=d+T=B) I/Os. Updates can be performed in O(logB N)I/Os. Divide and merge operations can also be performed on the cross-tree in O((N=B)1�1=d + T=B) I/Os and the structure can be used inthe design of dynamic data structures for several other problems (Grossiand Italiano 1999a;b).Halfspace range searching. Given a set of points in d-dimensionalspace, a halfspace range query asks for all points on one side of a
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External Memory Data Structures 25query hyperplane. Halfspace range searching is the simplest form ofnon-isothetic (non-orthogonal) range searching. The problem was �rstconsidered in external memory by Franciosa and Talamo (1994; 1997).Based on an internal memory structure due to Chazelle et al. (1985),Agarwal et al. (2000b) described a simple optimal O(logB N + T=B)query, O(N=B) space structure for the 2-dimensional case. The numberof I/Os used to construct the structure is O(N(logN) logB N). Theyalso described a structure for the 3-dimensional case, answering queriesin O(logB N + T=B) expected I/Os but requiring O((N=B) log(N=B))space. This structure is based on an internal memory result of Chan(2000) and the expected number of I/Os needed to construct the struc-ture is O((N=B)(log(N=B)) logB N).Based on the internal memory partition trees of Matou�sek (1992),Agarwal et al. (2000b) also gave a linear space data structure for answer-ing d-dimensional halfspace range queries in O((N=B)1�1=d+� + T=B)I/Os for any constant � > 0. The structure can be constructed inO(N logN) I/Os and using partial rebuilding it can support updatesin O((log(N=B)) logB N) expected I/Os amortized. Using an improvedO(N logB N) construction algorithm, Agarwal et al. (2000a) obtainedan O(log2B N) amortized and expected update I/O-bound for the pla-nar case. Agarwal et al. (2000b) also showed how the query bound ofthe structure can be improved at the expense of extra space. They alsodiscussed how their linear space structure can be used to answer verygeneral queries|more precisely, how all points within a query polyhe-dron with m faces can be found in O(m(N=B)1�1=d+� + T=B) I/Os.Range searching on moving points. Recently there has been anincreasing interest in external memory data structures storing continu-ously moving objects. A key goal is to develop structures that only needto be changed when the velocity or direction of an object changes (asopposed to continuously).Kollios et al. (1999b) presented initial work on storing moving pointsin the plane such that all points inside a query range at query time t canbe reported in a provably e�cient number of I/Os. Their results wereimproved and extended by Agarwal et al. (2000a) who developed a linearspace structure that answers a query in O((N=B)1=2+� + T=B) I/Os forany constant � > 0. A point can be updated using O(log2B N) I/Os.The structure is based on partition trees and can also be used to answerqueries where two time values t1 and t2 are given and we want to �nd allpoints that lie in the query range at any time between t1 and t2. Usingthe notion of kinetic data structures introduced by Basch et al. (1999), aswell as a persistent version of the range searching structure by Arge et al.
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26(1999b) discussed in Section 6., Agarwal et al. (2000a) also developeda number of other structures with improved query performance. Oneof these structures has the property that queries in the near future areanswered faster than queries further away in time. Further structureswith this property were developed by Agarwal et al. (2001c).8. PROXIMITY QUERIESProximity queries such as nearest neighbor and closest pair querieshave become increasingly important in recent years, for example becauseof their applications in similarity search and data mining.Callahan et al. (1995) developed the �rst worst-case e�cient externalproximity query data structures. Their structures are based on an ex-ternal version of the topology trees of Frederickson (1993) called topologyB-trees, which can be used to dynamically maintain arbitrary binarytrees I/O-e�ciently. Using topology B-trees and ideas from an internalstructure of Bespamyatnikh (1998), Callahan et al. (1995) designed alinear space data structure for dynamically maintaining the closest pairof a set of points in d-dimensional space. The structure supports up-dates in O(logB N) I/Os. The same result was obtained by Govindara-jan et al. (2000) using the well-separated pair decomposition of Callahanand Kosaraju (Callahan and Kosaraju 1995a;b). Govindarajan et al.(2000) also show how to dynamically maintain a well-separated pair de-composition of a set of d-dimensional points using O(logB N) I/Os perupdate.Using topology B-trees and ideas from an internal structure due toArya et al. (1994), Callahan et al. (1995) developed a linear space datastructure for the dynamic approximate nearest neighbor problem. Givena set of points in d-dimensional space, a query point p, and a parameter�, the approximate nearest neighbor problem consists of �nding a pointq with distance at most (1 + �) times the distance of the actual near-est neighbor of p. The structure answers queries and supports updatesin O(logB N) I/Os. Agarwal et al. (2000a) designed I/O-e�cient datastructures for answering approximate nearest neighbor queries on a setof moving points.In some applications we are interested in �nding not only the nearestbut all the k nearest neighbors of a query point. Based on their 3-dimensional halfspace range searching structure, Agarwal et al. (2000b)described a structure that uses O((N=B) log(N=B)) space to store Npoints in the plane such that a k nearest neighbors query can be answeredin (logB N + k=B) I/Os.
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External Memory Data Structures 279. PRACTICAL GENERAL-PURPOSESTRUCTURESAlthough several of the worst-case e�cient (and often optimal) datastructures discussed in the previous sections are simple enough to be ofpractical interest, they are often not the obvious choices when decid-ing which data structures to use in a real-world application. There areseveral reasons for this, one of the most important being that in realapplications involving massive datasets it is practically feasible to usedata structures of size cN=B only for a very small constant c. Sincefundamental lower bounds often prevent logarithmic worst-case searchcost for even relatively simple problems when restricting the space useto linear, we need to develop heuristic structures which perform well inmost practical cases. Space restrictions also motivate us not to use struc-tures for single specialized queries but instead design general structuresthat can be used to answer several di�erent types of queries. Finally,implementation considerations often motivate us to sacri�ce worst-casee�ciency for simplicity. All of these considerations have led to the devel-opment of a large number of general-purpose data structures that oftenwork well in practice, but which do not come with worst-case perfor-mance guarantees. Below we quickly survey the major classes of suchstructures. The reader is referred to more complete surveys for details(Agarwal and Erickson 1999, Gaede and G�unther 1998, Nievergelt andWidmayer 1997, Greene 1989, Orenstein 1990, Samet 1990b).Range searching in d-dimensions is the most extensively researchedproblem. A large number of structures have been developed for thisproblem, including space �lling curves (see e.g. Orenstein 1986, Abeland Mark 1990, Asano et al. 1997), grid-�les (Nievergelt et al. 1984,Hinrichs 1985), various quad-trees (Samet 1990a;b), kd-B tress (Robin-son 1981)|and variants like Buddy-trees (Seeger and Kriegel 1990), hB-trees (Lomet and Salzberg 1990, Evangelidis et al. 1997) and cell-trees(G�unther 1989)|and various R-trees (Guttman 1984, Greene 1989, Sel-lis et al. 1987, Beckmann et al. 1990, Kamel and Faloutsos 1994). Of-ten these structures are broadly classi�ed into two types, namely spacedriven structures (like quad-trees and grid-�les), which partition theembedded space containing the data points and data driven structures(like kd-B trees and R-trees), which partition the data points themselves.Agarwal et al. (2001b) described a general framework for e�cient con-struction and updating of many of the above structures.As mentioned above, we often want to be able to answer a very diverseset of queries, like halfspace range queries, general polygon range queries,and point location queries, on a single data structure. Many of the above
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28data structures can easily be used to answer many such di�erent queriesand that is one main reason for their practical success. Recently, therehas also been a lot of work on extensions|or even new structures|which also support e.g. moving objects (see e.g. Wolfson et al. 1998;1999, Salzberg and Tsotras 1999, Kollios et al. 1999a, �Saltenis et al.2000, Pfoser et al. 2000, Tayeb et al. 1998, and references therein) orproximity queries (see e.g. Berchtold et al. 1997; 1998b; 1996, Ciaccaet al. 1997, Korn et al. 1996, Papadopoulos and Manolopoulos 1997,Roussopoulos et al. 1995, Seidl and Kriegel 1997, Sproull 1991, Whiteand Jain 1996, Katayama and Satoh 1997, Hjaltason and Samet 1995,Gaede and G�unther 1998, Agarwal and Erickson 1999, Nievergelt andWidmayer 1997, and references therein). However, as discussed, mostoften no guarantee on the worst-case query performance is provided forthese structures.So far we have mostly discussed point data structures. In general,we are interested in storing objects such as lines and polyhedra witha spatial extent. Like in the point case, a large number of heuristicstructures, many of which are variations of the ones mentioned above,have been proposed for such objects. However, almost no worst-casee�cient structures are known. In practice a �ltering/re�nement methodis often used when managing objects with spatial extent. Instead ofdirectly storing the objects in the data structure we store the minimalbounding (axis-parallel) rectangle containing each object together with apointer to the object itself. When answering a query we �rst �nd all theminimal bounding rectangles ful�lling the query (the �ltering step) andthen we retrieve the objects corresponding to these rectangles and checkeach of them to see if they ful�ll the query (the re�nement step). Oneway of designing data structures for rectangles (or even more generalobjects) is to transform them into points in higher-dimensional spaceand store these points in one of the point data structures discussed above(see e.g. Gaede and G�unther 1998, Nievergelt and Widmayer 1997, fora survey). However, a structure based on another idea has emerged asespecially e�cient for storing and querying minimal bounding rectangles.Below we further discuss this so-called R-tree and its many variants.R-trees. The R-tree, originally proposed by Guttman (1984), is a mul-tiway tree very similar to a B-tree; all leaf nodes are on the same level ofthe tree and a leaf contains �(B) data rectangles. Each internal node v(except maybe for the root) has �(B) children. For each of its childrenvi, v contains the minimal bounding rectangle of all the rectangles inthe tree rooted in vi. An R-tree has height O(logB N) and uses O(N=B)space. An example of an R-tree is shown in Figure 1.15. Note that there
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External Memory Data Structures 29R1 R2R3R4
R5A B CD

EF GHI R1 R2R3 R4 R5 R6A B C D E F G H IFigure 1.15 R-tree constructed on rectangles A, B, C, : : : , I (B = 3).is no unique R-tree for a given set of data rectangles and that minimalbounding rectangles stored within an R-tree node can overlap.In order to query an R-tree to �nd, say, all rectangles containing aquery point p, we start at the root and recursively visit all children whoseminimal bounding rectangle contains p. This way we visit all internalnodes whose minimal bounding rectangle contains p. There can be manymore such nodes than actual data rectangles containing p and intuitivelywe want the minimal bounding rectangles stored in an internal node tooverlap as little as possible in order to obtain a query e�cient structure.An insertion can be performed in O(logB N) I/Os like in a B-tree.We �rst traverse the path from the root to the leaf we choose to insertthe new rectangle into. The insertion might result in the need for nodesplittings on the same root-leaf path. As insertion of a new rectanglecan increase the overlap in a node, several heuristics for choosing whichleaf to insert a new rectangle into, as well as for splitting nodes duringrebalancing, have been proposed (Greene 1989, Sellis et al. 1987, Beck-mann et al. 1990, Kamel and Faloutsos 1994). The R�-tree variant ofBeckmann et al. (1990) seems to result in the best performance in manycases. Deletions are also performed similarly to deletions in a B-treebut we cannot guarantee an O(logB N) bound since �nding the datarectangle to delete may require many more I/Os. Rebalancing after adeletion can be performed by merging nodes like in a B-tree but someR-tree variants instead delete a node when it underows and reinsertits children into the tree (often referred to as \forced reinsertion"). Theidea is to try to obtain a better structure by forcing a global reorgani-zation of the structure instead of the local reorganization a node mergeconstitutes.Constructing an R-tree using repeated insertion takes O(N logB N)I/Os and does not necessarily result in a good tree in terms of query per-formance. Therefore several sorting based O(NB logM=B NB ) I/O construc-
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30tion algorithms have been proposed (Roussopoulos and Leifker 1985,Kamel and Faloutsos 1993, DeWitt et al. 1994, Leutenegger et al. 1996,Berchtold et al. 1998a). These algorithms are more than a factor of Bfaster than the repeated insertion algorithm and several of them producean R-tree with practically better query performance than an R-tree builtby repeated insertion. Still, no better than a linear worst-case query I/O-bound has been proven for any of them. Very recently, however, de Berget al. (2000) and Agarwal et al. (2001d) presented R-tree constructionalgorithms resulting in R-trees with provably e�cient worst-case queryperformance measured in terms of certain parameters describing the in-put data. They also discussed how these structures can be e�cientlymaintained dynamically.10. BUFFER TREESIn internal memory we can sort N elements in optimal O(N logN)time using �(N) operations on a dynamic balanced search tree. Usingthe same algorithm and a B-tree in external memory results in an al-gorithm using O(N logB N) I/Os. This is a factor of B logB NlogM=B(N=B) awayfrom optimal. In order to obtain an optimal sorting algorithm we needa structure that supports updates in O( 1B logM=B NB ) I/Os. The inef-�ciency of the B-tree sorting algorithm is a consequence of the B-treebeing designed to be used in an \on-line" setting where queries shouldbe answered immediately|updates and queries are handled on an indi-vidual basis. This way we are not able to take full advantage of the largeinternal memory. It turns out that in an \o�-line" environment wherewe are only interested in the overall I/O use of a series of operations andwhere we are willing to relax the demands on the query operations, wecan develop data structures on which a series of N operations can beperformed in O(NB logM=B NB ) I/Os in total. To do so we use the bu�ertree technique developed by Arge (1995a).Basically the bu�er tree is just a fan-out �(M=B) B-tree where eachinternal node has a bu�er of size �(M). The tree has heightO(logM=B NB );refer to Figure 1.16. Operations are performed in a \lazy" manner: Inorder to perform an insertion we do not (like in a normal B-tree) searchall the way down the tree for the relevant leaf. Instead, we wait untilwe have collected a block of insertions and then we insert this block inthe bu�er of the root (which is stored on disk). When a bu�er \runsfull" its elements are \pushed" one level down to bu�ers on the nextlevel. We can do so in O(M=B) I/Os since the elements in the bu�er �tin main memory and the fan-out of the tree is O(M=B). If the bu�erof any of the nodes on the next level becomes full by this process, the
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External Memory Data Structures 31bu�er-emptying process is applied recursively. Since we push �(M) ele-ments one level down the tree using O(M=B) I/Os (that is, we use O(1)I/Os to push one block one level down), we can argue that every blockof elements is touched a constant number of times on each of the levelsof the tree. Thus, not counting rebalancing, inserting N elements re-quires O(NB logM=B NB ) I/Os in total, or O( 1B logM=B NB ) amortized. Arge(1995a) showed that rebalancing can be handled in the same bound.The basic bu�er tree supporting insertions only can be used in anI/O-e�cient sorting algorithm. Arge (1995a) showed how deletions and(one-dimensional) range queries can also be supported I/O-e�cientlyusing bu�ers. The range queries are batched in the sense that we donot obtain the result of a query immediately. Instead parts of the resultwill be reported at di�erent times as the query is pushed down the tree.This means that the data structure can only be used in algorithms wherefuture updates and queries do not depend on the result of the queries.Luckily this is the case in many plane-sweep algorithms (Edelsbrunnerand Overmars 1985, Arge 1995a). In general, problems where the entiresequence of updates and queries is known in advance, and the only re-quirement on the queries is that they must all eventually be answered,are known as batched dynamic problems (Edelsbrunner and Overmars1985). Using the idea of multislabs discussed in Section 3., Arge (1995a)also showed how to implement a bu�ered segment tree, and Arge et al.(1998) showed how to use this data structure in a technique for solvinga general class of high-dimensional problems.The bu�er tree technique has been used to develop several data struc-tures which in turn have been used to develop algorithms in many di�er-ent areas (Arge et al. 1995; 1997; 1999a, Kumar and Schwabe 1996, Arge1995b, Fadel et al. 1999, Buchsbaum et al. 2000, van den Bercken et al.1997; 1998, Hutchinson et al. 1997, Brengel et al. 1999, Sanders 1999).External bu�ered priority queues have been extensively researched be-
O(logM=B NB ) M elements

B
M=B

Figure 1.16 Bu�er tree; Fan-out M=B tree where each node has a bu�er of size M .Operations are performed in a lazy way using the bu�ers.



www.manaraa.com

32cause of their applications in graph algorithms. Arge (1995a) showedhow to perform deletemin operations on a basic bu�er tree in amortizedO( 1B logM=B NB ) I/Os. Note that in this case the deletemin occurs rightaway, that is, it is not batched. This is accomplished by periodically com-puting the O(M) smallest elements in the structure and storing themin internal memory. Fadel et al. (1999) developed a similar bu�eredheap. Using a partial rebuilding idea, Brodal and Katajainen (1998)developed a worst-case e�cient external priority queue. A sequence ofB operations on this structure requires O(logM=B NB ) I/Os. Using thebu�er tree technique on a tournament tree, Kumar and Schwabe (1996)developed a priority queue supporting update operations in O( 1B log NB )I/Os. They also showed how to use their structure in several e�cient ex-ternal graph algorithms (see e.g Abello et al. 1998, Agarwal et al. 1998,Arge et al. 2000b, Buchsbaum et al. 2000, Chiang et al. 1995, Hutchin-son et al. 1999, Kumar and Schwabe 1996, Maheshwari and Zeh 1999,Munagala and Ranade 1999, Nodine et al. 1996, Ullman and Yannakakis1991, Maheshwari and Zeh 2001, Feuerstein and Marchetti-Spaccamela1993, Arge et al. 2000a; 2001, Meyer 2001, Zeh 2001, for other resultson external graph algorithms and data structures). Note that if thepriority of an element is known, an update operation can be performedin O( 1B logM=B NB ) I/Os on a bu�er tree using a delete and an insertoperation.11. CONCLUSIONSIn this chapter we have discussed recent advances in the develop-ment of provably e�cient external memory dynamic data structures,mainly for geometric objects. Such structures are often crucial in mas-sive dataset applications. We have discussed some of the most importanttechniques utilized to obtain e�cient structures.Even though a lot of progress has been made, many problems stillremain open. For example, O(logB N)-query and space e�cient struc-tures still need to be found for many higher-dimensional problems. Thepractical performance of many of the worst-case e�cient structures alsoneed to be researched.AcknowledgmentsThe author thanks the National Science Foundation for partially supporting thiswork through ESS grant EIA{9870734, RI grant EIA{9972879 and CAREER grantEIA{9984099, and Tammy Bailey, Tavi Procopiuc, Jan Vahrenhold, as well as ananonymous reviewer, for comments on earlier drafts of this chapter.
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