Chapter 1

EXTERNAL MEMORY
DATA STRUCTURES

Lars Arge

Abstract
In many massive dataset applications the data must be stored in
space and query efficient data structures on external storage devices.
Often the data needs to be changed dynamically. In this chapter we
discuss recent advances in the development of provably worst-case effi-
cient external memory dynamic data structures. We also briefly discuss
some of the most popular external data structures used in practice.

1. INTRODUCTION

Massive datasets often need to be stored in space efficient data struc-
tures on external storage devices. These structures are used to store
a dynamically changing dataset such that queries can be answered effi-
ciently. Many massive dataset applications involve geometric data (for
example, points, lines, and polygons) or data which can be interpreted
geometrically. Such applications often perform queries which correspond
to searching in massive multidimensional geometric databases for objects
that satisfy certain spatial constraints. Typical queries include reporting
the objects intersecting a query region, reporting the objects containing
a query point, and reporting objects near a query point.

While development of practically efficient (and ideally also multi-
purpose) external memory data structures (or indexes) has always been
a main concern in the database community, most data structure research
in the algorithms community has focused on worst-case efficient internal
memory data structures. Recently, however, there has been some cross-

*Chapter to appear in Handbook of Massive Datasets, J. Abello, P. M. Pardalos, and M. G.
C. Resende (Eds.), Kluwer Academic Publishers, 2001. Draft of July 2001.
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fertilization between the two areas. In this chapter we discuss recent ad-
vances in the development of worst-case efficient external memory data
structures. We will concentrate on data structures for geometric objects
but mention other structures when appropriate. We also briefly discuss
some of the most popular external data structures used in practice.

Model of computation. Accurately modeling memory and disk sys-
tems is a complex task (Ruemmler and Wilkes 1994). The primary
feature of disks we want to model is their extremely long access time
relative to that of internal memory. In order to amortize the access time
over a large amount of data, typical disks read or write large blocks
of contiguous data at once and therefore the standard two-level disk
model has the following parameters (Aggarwal and Vitter 1988, Vitter
and Shriver 1994, Knuth 1998):

N = number of objects in the problem instance;

T = number of objects in the problem solution;

M = number of objects that can fit into internal memory;
B = number of objects per disk block;

where B < M < N. An 1I/0 operation (or simply I/0) is the operation
of reading (or writing) a block from (or into) disk. Refer to Figure 1.1.
Computation can only be performed on objects in internal memory. The
measures of performance in this model are the number of I/Os used to
solve a problem, as well as the amount of space (disk blocks) used and
the internal memory computation time.

Several authors have considered more accurate and complex multi-
level memory models than the two-level model. An increasingly popular
approach to increase the performance of I/O systems is to use several
disks in parallel so work has especially been done in multi disk models.
See e.g. the recent survey by Vitter (1999a). We will concentrate on
the two-level one-disk model, since the data structures and data struc-

T -

Figure 1.1 Disk model; An I/O moves B contiguous elements between disk and main
memory (of size M).
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ture design techniques developed in this model often work well in more
complex models. For brevity we will also ignore internal computation
time.

Outline of chapter. The rest of this chapter is organized as fol-
lows. In Section 2. we discuss the B-tree, the most fundamental (one-
dimensional) external data structure, as well as recent variants and
extensions of the structure. In Section 3. we illustrate some of the
important techniques and ideas used in the development of provably
I/O-efficient data structures for higher-dimensional problems. We do so
through a discussion of a data structure for the stabbing query problem.
In Section 4. we discuss external point location and a general method for
obtaining a dynamic data structure from a static one. In Section 5. and
Section 6. we discuss data structures for 3-sided and general (4-sided)
two-dimensional range searching, respectively, and in Section 7. we sur-
vey various extensions of these structures. Section 8. contains a survey
of external data structures for proximity queries, and in Section 10. we
discuss the so-called buffer trees, which can often be used in I/O-efficient
algorithms.

Several of the worst-case efficient structures we consider are simple
enough to be of practical interest. Still, there are many good reasons for
developing simpler (heuristic) and general purpose structures without
worst-case performance guarantees, and a large number of such struc-
tures have been developed in the database community. Even though
the focus of this chapter is on provably worst-case efficient data struc-
tures, in Section 9. we give a short survey of some of the major classes of
such heuristic-based structures. The reader is referred to recent surveys
for a more complete discussion (Agarwal and Erickson 1999, Gaede and
Gunther 1998, Nievergelt and Widmayer 1997).

Throughout the chapter we assume that the reader is familiar with
basic internal memory data structures and design and analysis methods,
such as balanced search trees and amortized analysis—see e.g. Cormen
et al. (1990).

2. B-TREES

The B-tree is the most fundamental external memory data struc-
ture (Bayer and McCreight 1972, Comer 1979, Knuth 1998, Huddleston
and Mehlhorn 1982). The B-tree corresponds to an internal memory
balanced search tree. It uses linear space O(N/B) disk blocks and
supports insertions and deletions in O(logz N) I/Os. One-dimensional
range queries, asking for all elements in the tree in a query interval
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Figure 1.2 B-tree; All internal nodes (except possibly the root) have fan-out ©(B)
and there are O(N/B) leaves. The tree has height O(loggz V).

[q1,q2], can be answered in O(logg N +7T'/B) I/Os, where T is the num-
ber of reported elements.

The space, update, and query bounds obtained by the B-tree are
the bounds we would like to obtain in general for more complicated
problems. The bounds are significantly better than the bounds we
would obtain if we just used an internal memory data structure and
virtual memory. The O(N/B) space bound is obviously optimal and the
O(logg N +T/B) query bound is optimal in a comparison model of com-
putation. Note that the query bound consists of an O(logg N) search-
term corresponding to the familiar O(log N) internal memory search-
term,! and an O(T/B) reporting-term accounting for the O(T/B) 1/0Os
needed to report 7' elements. Recently, the above bounds have been
obtained for a number of problems (e.g. Arge and Vitter 1996, Arge
et al. 1999b, Vengroff and Vitter 1996, Agarwal et al. 2000b, Calla-
han et al. 1995, Govindarajan et al. 2000) but higher lower bounds have
also been established for some problems (Subramanian and Ramaswamy
1995, Arge et al. 1999b, Hellerstein et al. 1997, Kanellakis et al. 1996,
Koutsoupias and Taylor 1998, Samoladas and Miranker 1998, Kanth and
Singh 1999). We discuss these results in later sections.

B-trees come in several variants, like Bt and B* trees (see e.g. Bayer
and McCreight 1972, Comer 1979, Huddleston and Mehlhorn 1982, Arge
and Vitter 1996, Knuth 1998, Agarwal et al. 1999, and their references).
A basic B-tree is a ©(B)-ary tree (with the root possibly having smaller
degree) built on top of ©(N/B) leaves. The degree of internal nodes, as
well as the number of elements in a leaf, is typically kept in the range
[B/2...B] such that a node or leaf can be stored in one disk block. All
leaves are on the same level and the tree has height O(logz N) refer
to Figure 1.2. In the most popular B-tree variants, the N data elements
are stored in the leaves (in sorted order) and each internal node holds

1We use log N to denote log, N.
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O©(B) “routing” (or “splitting”) elements used to guide searches. As
we will see in later sections, it can sometimes be useful to use a B-
tree with fan-out ©(B¢) for some constant 0 < ¢ < 1. If we keep
©(N/B) leaves, every such tree will use O(N/B) space and have height
O(logge N) = O(logg N).

To answer a range query [q1,qs] on a B-tree we first search down
the tree for ¢; and g2 using O(logz N) I/O0s, and then we report the
elements in the O(T'/B) leaves between the leaves containing ¢; and ga.
We perform an insertion in O(loggz N) I/Os by first searching down the
tree for the relevant leaf [. If there is room for the new element in [
we simply store it there. If not, we split [ into two leaves I’ and 1" of
approximately the same size and insert the new element in the relevant
leaf. The split of [ results in the insertion of a new routing element
in the parent of [, and thus the need for a split may propagate up the
tree. Propagation of splits can often be avoided by sharing some of the
(routing) elements of the full node with a non-full sibling. A new (degree
2) root is produced when the root splits and the height of the tree grows
by one. Similarly, we can perform a deletion in O(logg N) 1/Os by first
searching for the relevant leaf [ and then removing the deleted element.
If this results in [ containing too few elements we either fuse it with one
of its siblings (corresponding to deleting [ and inserting its elements in
the sibling), or we perform a share operation by moving elements from
a sibling to [. As splits, fuse operations may propagate up the tree and
eventually result in the height of the tree decreasing by one.

In internal memory, an N element search tree can be built in optimal
O(N log N) time simply by inserting the elements one by one. In external
memory we would use O(N logg N) 1/Os to build a B-tree using the
same method. Interestingly, this is not optimal since Aggarwal and
Vitter (1988) showed that sorting N elements in external memory takes
(—)(% log /i %) I/0s. We can build a B-tree in the same bound by first
sorting the elements and then build the tree level-by-level bottom-up.

2.1 B-TREE VARIANTS AND EXTENSIONS

Recently, several important variants and extensions of B-trees have
been considered. In the following we further discuss weight- and level-
balanced B-trees, persistent B-trees, as well as string B-trees.

Weight-balanced B-trees. The weight-balanced B-tree developed by
Arge and Vitter (1996) are similar to normal B-trees in that all leaves
are on the same level and rebalancing is done by splitting and fusing
nodes. However, instead of requiring the degree of a node to be ©(B°),
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we require the weight (or size) of a node v to be ©(B") if v is the
root of a subtree of height h. The weight of v is defined as the number
of elements in the leaves of the subtree rooted in v. The constraint
actually means that v has degree ©(B¢) and thus the tree has height
O(logpg N). It also means that the children of v are of approximately the
same size O(B°"~1)). In normal B-trees their sizes can differ by a factor
exponential in h. Weight-balanced B-trees can be viewed as an external
version of BB[a]-trees (Nievergelt and Reingold 1973)—however, weight-
balanced B-trees have also been used as a simple alternative to BB[a/]-
trees in internal memory structures (Arge and Vitter 1996).

After performing an insertion or deletion in a leaf [ of a weight-
balanced B-tree the weight constraint may be violated in nodes on the
path from the root to [. In order to rebalance the tree we perform a
split or fuse operation on each of these O(logz N) nodes. A key prop-
erty of a weight-balanced B-tree is that after performing a rebalance
operation (split or fuse) on a weight ©(B") node v, O(B") updates
have to be performed below v before another rebalance operation needs
to be performed on v. This means that even if the cost of a rebalance
operation is O(B") 1/0s, the amortized complexity of an update re-
mains O(logg N). The cost of a rebalance operation could for example
be O(B°") if v stores a size ©(B") secondary structure that needs to be
rebuilt when v splits (for example, a structure on the ©(B") elements
below v). The property also suggests a simple rebalancing strategy based
on partial-rebuilding (see e.g. Overmars 1983); Instead of splitting or fus-
ing nodes on the path from the root to I, we can simply rebuild the tree
rooted in the highest unbalanced node on this path. Since the (sub-)
tree can be rebuilt in a linear number of I/Os we obtain an O(logg N)
amortized update bound. Weight-balanced B-trees have been used in
numerous efficient data structures, most recently in an elegant so-called
cache-oblivious B-tree structure by Bender et al. (2000). This structure
obtains B-tree-like update and query bounds without explicitly using
the (possibly unknown) block size B (see also Frigo et al. 1999). We will
discuss other applications in later sections.

Level-balanced B-trees. Apart from the operations discussed above,
we sometimes need to be able to perform divide and merge operations
on B-trees. A divide operation at element z constructs two trees con-
taining all elements less than and greater than x, respectively. A merge
operation performs the inverse operation. A divide operation can be
performed in O(loggz N) I/Os by first splitting all nodes on the path
from the root to the leaf containing z, constructing two trees, and then
performing fuse/share operations on the relevant subset of the same
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nodes in order to reestablish the B-tree invariant for the two trees. Sim-
ilarly, a merge operation can also be performed in O(logg N) I/Os using
O(logp N) split/share operations (Mehlhorn 1984).

In some applications we need to be able to traverse a path in a B-tree
from a leaf to the root. To do so we need a parent-pointer from each node
to its parent. Maintaining such pointers during a rebalance operation
(split, fuse or merge) on a node v requires O(B) I/Os since we need to
update parent pointers of ©(B) of v’s children. This results in a B-tree
update, divide, or merge operation taking O(Blogg N) I/Os. However,
using simple modifications of standard B-trees or weight-balanced B-
trees, update operations can still be performed in O(loggz N) I/Os since
it can be guaranteed that ©(B) updates have to be performed below a
node v between rebalance operations on v.

Recently, Agarwal et al. (1999) developed a variant of B-trees in
which divide and merge operations can also be supported 1/O-efficiently
while maintaining parent pointers. The main idea in the so-called level-
balanced B-trees is to use a global balance condition instead of the local
degree or weight conditions used in B-trees or weight-balanced B-trees.
More precisely, a constraint is imposed on the number of nodes on each
level of the tree. When the constraint is violated the whole subtree
at that level and above is rebuilt. The structure uses O(N/B) space,
supports query in O(loggz N) I/0s, and update, divide, and merge oper-
ations in O(logh N) 1/Os amortized.? Level-balanced B-trees e.g. have
applications in dynamic maintenance of planar st-graphs (Agarwal et al.
1999).

Persistent B-trees. In some database applications we need to be
able to update the current database while querying both the current
and earlier versions of the database (data structure). One simple but
very inefficient way of supporting this functionality is to copy the whole
data structure every time an update is performed. Another and much
more efficient way is through the (partially) persistent technique (Sarnak
and Tarjan 1986, Driscoll et al. 1989), also sometimes referred to as the
multiversion method (Becker et al. 1996, Varman and Verma 1997).
Instead of making copies of the structure, the idea in this technique is
to maintain one structure at all times but for each element keep track
of the time interval at which it is really present in the structure. A B-
tree can be made persistent as follows: Each data element is augmented
with an ezistence interval consisting of the time at which the element
was inserted and (possibly) the time at which it was deleted. We say

2The precise bounds are actually slightly better and more complicated (Agarwal et al. 1999).
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that an element is alive in its existence interval. All elements are stored
in a slightly modified B-tree where we also associate a node ezistence
interval with each node. Apart from the normal B-tree constraint on
the number of elements in a node, we also maintain that a node contains
©(B) alive elements in its existence interval. This means that for a given
time ¢, the nodes with existence intervals containing ¢ make up a B-tree
on the elements alive at that time. Thus we can perform range queries
in O(logg N + T/B) on any version (at any time) of the tree as usual
(remembering to disregard dead elements in the visited nodes). Here N
is the number of updates performed.

An insertion in a persistent B-tree is performed almost like a normal
insertion. We first find the relevant leaf [ and if there is room for it we
insert the new elements. Otherwise we have an overflow and to handle
this we first copy all alive elements in [ and make the current time the
endpoint of the existence interval of | (corresponding to deleting [ at the
current time). Depending on how many elements we copied, we either
construct one new leaf on them, split them into two equal size groups
and construct two new leaves on them, or we copy the alive elements
from one of I’s siblings and construct one or two leaves out of all the
copied elements this corresponds to performing split or fuse operations
on the alive elements in / and its sibling. In all cases we make sure that
there is room for ©(B) future updates in each of the new leaves. We
then insert the new element in the relevant leaf and set the start time
of the existence interval of all new leaves to the current time. Finally,
we insert references to the new leaves in I’s parent and (persistently)
delete the reference to I. This may result in similar overflow operations
cascading up one path to the root of the structure.

In order to perform a deletion we first update the existence interval of
the relevant element in leaf [. As the element is not deleted, we do not
need to perform a fuse operation as in a normal B-tree. However, the
deletion may result in [ containing less than the minimum allowed num-
ber of alive elements. If this is the case we copy the alive elements from
[ and one of its siblings and construct one or two new leaves as during
an insertion. We also update the references in [’s parent as previously,
possibly resulting in similar updates up one path of the tree.

Both insertions and deletions can be handled in O(logz N) 1/Os since
in both cases we touch a constant number of nodes on the O(logg N)
level of the structure. In total we construct O(N/B) leaves since we
construct O(1) new leaves only when O(B) updates have been performed
on an existing leaf. A similar argument can be applied to the nodes on
each level of the tree and thus we can prove that the structure uses
O(N/B) space in total.
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Several times in later sections we will construct a data structure by
performing N insertion and deletions on an initially empty persistent
B-tree, and then use the resulting (static) structure to answer queries.
Using the above update algorithms, the construction takes O(N logg N)
I/0s. Utilizing the distribution-sweeping technique, Goodrich et al.
(1993) showed how to construct the structure (perform the N updates
without doing queries) more efficiently in O(% logar/ s %) I/Os. Their
method requires that every pair of elements in the structure can be
compared—even a pair of elements not present in the structure at the
same time. Unfortunately, as we will see in later sections, when working
with geometric objects (such as line segments) we will not always be able
to compare any two elements. It should be noted that the O(N logg N)
construction algorithm—that is, the update algorithm described above—
also requires every pair of elements to be comparable, since elements can
be used as routing elements in the internal nodes of the structure long
after they have been deleted. Thus when performing an update or query
with element e at time ¢, we might have to compare e with elements not
alive at time t. However, by storing data elements in all nodes of the tree
(not just the leaves) and using slightly different update algorithms, we
can eliminate this problem such that the O(N logg N) algorithm only
compares elements present in the structure at the same time (Arge and
Teh 2000).

String B-trees. In the B-tree variants discussed so far, the elements

and thus the routing elements in internal nodes have been of unit size.
In string applications a data element (string of characters) can often
be arbitrarily long or different elements can be of different length. This
means that we cannot use the strings as routing elements and at the same
time maintain a large fan-out of internal nodes. We could store pointers
to strings in the internal nodes and obtain fan-out ©(B) but searching
would then be inefficient since we could be forced to perform a lot of
I/0s to route a query through a node. Ferragina and Grossi (1995) (see
also Ferragina and Grossi 1996) recently presented an elegant solution
to this problem called the string B-tree. From a high-level point of view,
a string B-tree on K strings of total length IV is just a B-tree built on N
pointers to the N suffixes of the K strings in lexicographical order. To
route a query string ¢ through the O(B) string pointers in an internal
node, each such node contains a blind trie data structure. A blind trie is
a variant of the compacted trie (Knuth 1998, Morrison 1968), which fits
in one disk block. Routing ¢ through a node v requires one I/O to load
the blind trie, as well as some extra I/Os to scan parts of ¢ and the strings
corresponding to the pointers stored in v. However, since the scanned
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parts of ¢ correspond to parts which will not be scanned again further
down the tree, we can charge the I/Os to those parts of ¢ and obtain
an optimal O(logg N + |¢|/B) search bound. Ferragina and Grossi also
showed how to insert or delete a string ¢ in O(|g|logg N) 1/Os amortized.
Other results on string B-trees and external string processing have been
obtained by Crauser and Ferragina (1999), Ferragina and Luccio (1998),
Farach et al. (1998) and Arge et al. (1997).

3. INTERVAL MANAGEMENT

After considering the one-dimensional B-trees, we now turn to data
structures for more complicated and higher-dimensional problems like
range searching. In internal memory many elegant data structures have
been developed for such problems—see e.g. the recent survey by Agar-
wal and Erickson (1999). Unfortunately, most of these structures are
not efficient when mapped to external memory mainly because they
are normally based on binary trees. The main challenge when develop-
ing efficient external structures is to use B-trees as base structures, that
is, to use multiway trees instead of binary trees. Recently, some progress
has been made in the development of provably I/O-efficient data struc-
tures based on multi-way trees. In this section we illustrate some of
the techniques and ideas used in the development of these structures
through the stabbing query problem. The stabbing query problem is the
problem of maintaining a dynamically changing set of (one-dimensional)
intervals such that given a query point ¢ all intervals containing ¢ can
be reported efficiently.

The static version of the stabbing query problem (the set of intervals
is fixed) can easily be solved I/O-efficiently using a sweeping idea and a
persistent B-tree (Arge et al. 1999b, Chazelle 1986, Ramaswamy 1997).
To illustrate this, consider sweeping N intervals along the z-axis starting
at —oo, inserting each interval in a B-tree when its left endpoint is
reached and deleting it again when its right endpoint is reached. To
answer a stabbing query with ¢ we simply have to report all intervals in
the B-tree at “time” g—refer to Figure 1.3. Thus following the discussion
in Section 2., the structure uses O(N/B) space and can be constructed
in O(% logy/ B %) I/0Os. Queries can be answered in O(logy N + T'/B)
I/0s.

Following earlier attempts of Kanellakis et al. (1996) (see also Sub-
ramanian and Ramaswamy 1995, Ramaswamy and Subramanian 1994,
Blankenagel and Giiting 1990, Icking et al. 1987), a dynamic structure
for the problem was developed by Arge and Vitter (1996). This structure
can be viewed as an external version of the interval tree (Edelsbrunner
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. =

Figure 1.8 Static solution to stabbing query problem using persistence.

1983a;b). It consists of a fan-out ©(v/B) weight-balanced B-tree 7 on
the endpoints of the intervals (the base tree), with the intervals stored in
secondary structures associated with the internal nodes of T as described
below. A range X, (containing all points below v) can be associated with
each node v in a natural way. This range is subdivided into ©(v/B) sub-
ranges associated with the children of v. For illustrative purposes we call
the subranges slabs and the left (right) endgomt of such a slab a slab
boundary. Refer to Figure 1.4. The O(v/B") = O(B) contiguous sets
of slabs are called multislabs. An example of a multislab is X,, X,, in

Figure 1.4. We assign an interval I to the node v where I contains one
or more of the slab boundaries of v but not any of the slab boundaries
associated with v’s parent. Each node v of 7 contains ©(B) secondary
structures used to store the set of intervals I, assigned to v; a left slab
list and a right slab list for each of the ©(v/B) slabs, a multislab list
for each of the ©(B) multislabs, as well as an underflow structure. A
right slab list contains intervals from I, with the right endpoint in the
corresponding slab, sorted according to the right endpoint. Similarly, a
left slab list contains intervals with the left endpoint in a slab, sorted
according to the left endpoint. A multislab list stores intervals which
span the corresponding multislab but not any wider multislab. If the
number of intervals stored in a multislab list is less than B we instead
store them in the underflow structure. This means that the underflow

- .
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Figure 1.4 Node v in base tree of external in-  Figure 1.5 Querying a node

terval tree. The range X, associated with v is  with q.
divided into 5 slabs.
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structure contains O(B?) intervals. An interval is thus stored in at most
three structures; two slab lists and possibly in a multislab list or the
underflow structure. For example, interval s in Figure 1.4 is stored in
the left slab list of the first slab and in the right slab list of the fourth
slab, as well as in the multislab list corresponding to the second and
third slab. Thus the structure uses O(N/B) space.

In order to answer a stabbing query g we search down T for the leaf
containing ¢, reporting all the relevant intervals among the intervals
stored in secondary structures of the node we pass. In node v we report
all intervals in multislab lists containing ¢, as well as all intervals in
the underflow structure containing ¢. We also traverse and report the
intervals in the right (left) slab list of the slab containing ¢ from the
largest toward the smallest—according to right (left) endpoint—until
we meet an interval that does not contain q. No other intervals in the
list can contain g—refer to Figure 1.5. If T, is the number of intervals
reported in v we use O(T,/B) 1/Os to report intervals from the slab
and multislab lists. There is no O(loggz N)-term since we do not search
in any of the lists. If we implement the underflow structure using the
static structure based on a persistent B-tree described above, we can
also find the relevant intervals in this structure in O(logg B? +T,/B) =
O(1+4T,/B) 1/Os. Since there are O(loggz N) nodes on the search path,
we in total use O(>_,(1+7,/B)) = O(logg N +T/B) 1/Os to answer a
query.

To insert a new interval we first use O(logz N) 1/0s to search down
T for the node where the interval needs to be inserted in secondary
structures. In this node we insert the interval in a left and right slab
list and possibly in a multislab list. If these lists are implemented using
B-trees we can do so in O(logg N) I/Os. We may also need to insert the
interval in the underflow structure. The structure is static but since it
has size O(B?) we can use a global rebuilding idea to make it dynamic
(Overmars 1983); we simply store the update in a special “update block”
and once B updateq have been collected we rebuild the structure using
O(—logM/B B) [/Os. Assuming M > B2 that is, that the internal
memory is capable of holding B blocks, thls is O(B) and we obtain
an O(1) amortized update bound. Arge and Vitter (1996) have shown
how to make this worst-case, even without the assumption on the main
memory size. To complete the insertion, we also need to insert the new
endpoints in the base tree 7 and rebalance the tree using split and share
operations. Performing split or share operations may be costly since
they result in the need for restructuring of the secondary structures.
However, since this restructuring can be performed in a linear number
of I/Os in the size of the secondary structures and as 7 is implemented as
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a weight-balanced B-tree (Section 2.), we can obtain an O(1) amortized
I/0O bound for a rebalance operation. Thus in total we can perform an
insertion in O(logg N) 1/Os amortized. The bound can even be made
worst-case using standard lazy rebuilding techniques. Deletions can be
handled in O(logg N) I/Os in a similar way. Variants of the external
interval tree structure as well as experimental results on applications of
it in isosurface extraction® have been considered by Chiang and Silva
(Chiang and Silva 1997, Chiang et al. 1998, Chiang and Silva 1999).

The above solution to the stabbing query problem illustrates many of
the problems encountered when developing I/O-efficient dynamic data
structures, as well as the techniques commonly used to overcome these
problems. As already discussed, the main problem is that in order to
be efficient, external tree data structures need to have large fan-out. In
the above example this resulted in the need for what we called multi-
slabs. To handle multislabs efficiently we used the notion of underflow
structure, as well as the fact that we could decrease the fan-out of T
to ©(v/B) while maintaining the O(loggz N) tree height. The underflow
structure—implemented using sweeping and a persistent B-tree—solved
a static version of the problem on O(B?) interval in O(1 + T,/B) 1/Os.
The structure was necessary since if we had just stored the intervals in
multislab lists we might have ended up spending ©(B) I/Os to visit the
©(B) multislab lists of a node without reporting more than O(B) inter-
vals in total. This would have resulted in an Q(Blogg N +T'/B) query
bound. We did not store intervals in multislab lists containing ©(B) in-
tervals in the underflow structure, since the I/Os spent on visiting such
lists during a query can always be charged to the O(T,/B)-term in the
query bound. The idea of charging some of the query cost to the out-
put size is often called filtering (Chazelle 1986), and the idea of using
a static structure on O(B?) elements in each node has been called the
bootstrapping paradigm (Vitter 1999a:b). Finally, the ideas of weight-
balancing and global rebuilding were used to obtain worst-case efficient
update bounds. In Section 5. we will discuss another example of the use
of all the above ideas.

4. PLANAR POINT LOCATION

The planar point location problem is defined as follows: Given a pla-
nar subdivision with N vertices (i.e., a decomposition of the plane into
polygonal regions induced by a straight-line planar graph), construct a

3Based on a sweeping idea and a persistent list, Agarwal et al. (1998) described an efficient
static structure for terrain contour line extraction.
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data structure so that the face containing a query point p = (z,y) can
be reported efficiently. We will concentrate on the problem of finding
the first segment of the subdivision hit by a vertical ray emanating at p
(a vertical ray shooting query) refer to Figure 1.6. After answering this
query, the face containing the query point can easily be found (Overmars
1985).

In internal memory, a lot of work has been performed on the point
location problem see e.g. the survey by Snoeyink (1997). Sarnak and
Tarjan (1986) presented a very simple solution to the static problem
based on persistence. Their solution is similar to the static solution to
the interval management problem discussed in the previous section. It
is based on the fact that a vertical line | imposes a natural order on
the segments in the subdivision intersected by [. This means that if we
sweep the subdivision from left the right (—oo to oc) with a vertical line,
inserting a segment in a persistent search tree when its left endpoint is
encountered and deleting it again when its right endpoint is encountered,
we can answer a point location query p = (z,y) by searching for the
position of y in the tree at “time” z. Note that in this method the
elements (segments) present in the persistent structure at different times
cannot necessarily be compared. As discussed in Section 2., this means
that we cannot use the O(%logM/B %) algorithm of Goodrich et al.
(1993) to construct the same structure in external memory but have to
use the less efficient O(N logg N) I/0 algorithm. However, we do obtain
a linear space external point location data structure that answers queries
in O(logg N) I/0Os. Goodrich et al. (1993) discussed another O(logg N)
query data structure based on a parallel fractional cascading technique
by Tamassia and Vitter (1996). They did not analyze how many I/Os are
needed to construct the structure. Several structures which can answer
a batch of queries I/O-efficiently have also been proposed (Goodrich
et al. 1993, Arge et al. 1995; 1998, Crauser et al. 1998, Vahrenhold and
Hinrichs 2000)

SN
<>

Figure 1.6 Vertical ray Figure 1.7 Answering a query on segments in
shooting query with p. I,. Answer can be in two slab lists and O(B)
multislab lists.

%
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Recently, progress has been made in the development of 1/O-efficient
dynamic point location structures. In the dynamic problem we can
change the subdivision dynamically (insert and delete edges/segments
and vertices). Agarwal et al. (1999) developed a dynamic structure for
monotone subdivisions and Arge and Vahrenhold (2000) developed a
structure for the general problem. Both structures are based on the
external interval tree structure described in the previous section. The
main idea is to store the segments of the subdivision (or rather their
projection onto the z-axis) in a structure very similar to an interval
tree. Doing so a query with p = (z,y) can be answered similarly to a
stabbing query with x, except that in each node v visited by the query
procedure a ray shooting query is answered on the segments in I,,. The
global ray shooting query can then be answered by choosing the lowest
segment among the O(logz N) segments found this way. We can answer
a query on the segments in I, by answering the query on the segments in
two slab lists and O(B) multislab lists (refer to Figure 1.7). Using ideas
also utilized in several internal memory structures (Cheng and Janar-
dan 1992, Baumgarten et al. 1994), we can answer queries on the slab
lists in O(logp N) 1/Os with a slightly modified B-tree (Agarwal et al.
1999). It is also easy to answer a ray shooting query on a multislab list
in O(logg N) I/0Os using a B-tree storing the segments in y-order. How-
ever, if we query each of the ©(B) multislab lists individually we will
end up using O(Blogp N) I/0s to answer the query in v. Agarwal et al.
(1999) improved this to O(logz N), obtaining an overall query bound of
O(log% N), by storing the segments in all multislab lists in one combined
structure as described below.

Given two segments in the same multislab list we can easily determine
which segment is above the other (formally a segment s is above a seg-
ment ¢ if there exists a vertical line [ intersecting both s and ¢ such that
the intersection between [ and s is above the intersection between [ and
t). On the other hand, two segments in different multislab lists might
not be comparable (if they cannot be intersected by the same vertical
line) and therefore we cannot just build a B-tree on the segments in all
multislab lists of a node v and use that to answer a query. Agarwal et al.
(1999) used the fact that the segments only have endpoints on ©(v/B)
different lines (we imagine cutting the segments in the multislabs at slab
boundaries) to construct an efficient structure. They also used that, as
shown by Arge et al. (1995), N segments in the plane can be sorted in
O(% log /i X)1/Os a set of segments is sorted if for any two com-
parable segments s and t, if s is above ¢ then s appears after ¢ in the
sorted order. More precisely, the multislab list structure is constructed
as follows: Let R denote the sorted set of multislab segments in a node.
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We first construct a fan-out /B B-tree on R. For a node w in the tree,
let R,, denote the subsequence of R stored in the subtree rooted at w.
To guide the processing of queries, we store certain segments of R,, in
each internal node w; let wy, ..., w /g denote the children of an internal

node w. For 1 < i,j < /B, we define i to be the maximal segment of
R, that intersects the jth vertical slab. We store all ©(B) segments j;;
at w in O(1) blocks. In this way the structure requires O(N/B) space
and can be constructed in O(% logr/B %) I/Os. To answer a query with
p = (z,y), we follow a path from the root to a leaf z of the B-tree so
that R, contains the result of the query. At each node w visited by the
procedure we do the following: If p lies in the interior of the rth slab,
we define E,, = {u;; | 1 <4 < +/B}. The definition of y;; ensures that
if p; is the first (lowest) segment of E, intersected by an upward ray
emanating in p, then the tree rooted at w; contains the first segment
of R hit by an upward ray emanating in p. We therefore visit w; next.
In this way a query can be answered in O(logz N) I/Os. One way of
thinking of the multislab list structure is as a fan-out VB B-tree for
each of the v/B slabs, all stored in the same structure; When answering
a query in the rth slab, E, of all nodes make up a fan-out /B B-tree
on the segments intersecting the slab.

The main problem in making the above point location structure dy-
namic is making the multislab list structure dynamic. The problem is
that inserting a new segment may change the total order R consider-
ably; refer to Figure 1.8. Agarwal et al. (1999) used special features of
monotone subdivisions to limit such changes and obtained an O(log% N)
multislab list structure update bound. This is also the global update
bound since only one multislab list structure needs to be updated when
performing an insertion or deletion and since the rest of the structure can
be easily updated in O(logp N) I/Os using standard B-tree and weight-
balanced B-tree techniques. Arge and Vahrenhold (2000) extended the
structure to work for general subdivisions. To do so they used a new
general dynamization technique discussed in the next subsection. Using
this method on the multislab list structure they first developed a dy-

g 2 - 3/ 5

5. uatl - — 2 —

4— — — —_— 1— —y
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Figure 1.8 Inserting a new segment may change total order significantly. b) Original
segments. a) and c) illustrate different insertions and resulting total orders.
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namic version of this structure, which supports updates in O(loggz N)
1/0s and answers queries in O(log% N) 1/Os. Using a technique similar
to fractional cascading (Chazelle and Guibas 1986, Mehlhorn and Naher
1990) they improved the query performance to O(logz N), obtaining a
linear space point location structure supporting updates and queries in

O(log% N) 1/0s.

4.1 THE LOGARITHMIC METHOD

The general method for transforming a static external memory data
structure into an efficient dynamic structure is an external version of
the logarithmic method (Bentley 1979) (see also Overmars 1983). In
internal memory, the main idea in this method is to partition the set
of N elements into log N subsets of exponentially increasing size 27,
1=20,1,2,..., and build a static structure D; for each of these subsets.
Queries are then performed by querying each D; and combining the
answers, while insertions are performed by finding the first empty D;,
discarding all structures D;, j < ¢, and building D; from the new element
and the ;;[1) 2! = 2! 1 elements in the discarded structures.

To make the logarithmic method I/O-efficient we need to decrease the
number of subsets to logz N, which in turn means increasing the size of
D; to BY. When doing so Dj, j < 1, does not contain enough objects
to build D; (since 1 + Zf;é B! < B%). However, it turns out that if
we can build a static structure I/O-efficiently enough, this problem can
be resolved and we can make a modified version of the method work in
external memory. Consider a static structure D that can be constructed
in O(% logz N) I/Os and that answers queries in O(logz N) I/Os (note
that O(%logM/B %) = O(%logB N) if M > B?). We partition the
N elements into logg N sets such that the ith set has size less than
B 4+ 1 and construct an external memory static data structure D; for
each set—refer to Figure 1.9. To answer a query, we simply query each

<B+1 <B+1 <B¥1 <B+1

Figure 1.9 Logarithmic method; log, N structures D; contains less than B* + 1
elements. D1, D>, ..., D; do not contain enough elements to build D;11 of size B/ .
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D; and combine the results using O(Zlf:gf’NlogB D;|) = O(logy N)
I/Os. We perform an insertion by finding the first structure D; such
that 2321 |D,| < B, discarding all structures D, j < 4, and building a
new D; from the elements in these structures using O((B*/B)logg B*) =
O(B* 'logy N) 1/Os. Now because of the way D; was chosen, we know
that 23;11 |Dj| > B!, which means that at least B'"' objects are
moved from lower indexed structures to D;. If we divide the D; con-
struction cost between these objects, each object is charged O(loggz N)
I/Os. Since an object never moves to a lower indexed structure we
can at most charge it O(logg N) times during N insertions. Thus the
amortized cost of an insertion is O(log% N) I/Os. Note that the key to
making the method work is that the factor of B we lose when charging
the construction of a structure of size B? to only B~ ! objects is offset by
the 1/B factor in the construction bound. Arge and Vahrenhold (2000)
show how deletions can also be handled I/O-efficiently using a global
rebuilding idea.

5. 3-SIDED PLANAR RANGE SEARCHING

In Section 3. we discussed the stabbing query problem. This problem
is equivalent to performing diagonal corner queries—a special case of 2-
sided range queries—on a set of points in the plane. Consider mapping
an interval [z,y]| to the point (z,y) in the plane. Finding all intervals
containing a query point ¢ then corresponds to finding all points (x,y)
such that ©+ < ¢ and y > ¢g. Refer to Figure 1.10. In this section we
consider the more general 3-sided planar range searching problem: Given
a set of points in the plane the solution to a 3-sided query (g1, q2,q3)
consists of all points (z,y) with ¢ < z < ¢o and y > ¢g3. Refer to
Figure 1.11.

Following several earlier attempts (Ramaswamy and Subramanian
1994, Subramanian and Ramaswamy 1995, Blankenagel and Giiting 1990,
Icking et al. 1987), Arge et al. (1999b) developed an optimal dynamic
structure for the 3-sided planar range searching problem. The structure

Figure 1.10 Diagonal corner query. Figure 1.11 3-sided query.
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uses many of the ideas already discussed for the interval tree structure in
Section 3.: Bootstrapping using a static structure, filtering, and a weight-
balanced B-tree. In fact, the I/O-optimal static solution to the problem
can be obtained using the same persistence idea as the one used in the
interval case. This time we imagine sweeping the plane with a horizontal
line from y = oo to y = —oc and inserting the z-coordinate of points
in a persistent B-tree as they are met. To answer a query (g1, g2, g3) we
perform a one-dimensional range query [q1, g2] on the B-tree at “time”
q3. Following the discussion in Section 2., the structure obtained this
way uses linear space and queries can be answered in O(logg N +T'/B)
I/Os. It can be constructed in O(% logr/ B %) I/0s.

Using the static solution and the general dynamization method dis-
cussed in the previous section, we can immediately obtain a dynamic
solution to the problem with O(log% N) query and update bounds. The
optimal dynamic structure however is an external version of the inter-
nal memory priority search tree structure (McCreight 1985). Like the
external interval tree, the external priority search tree consists of a base
B-tree on the z-coordinates of the points. As previously, each internal
node corresponds naturally to an z-range, which is divided into O(B)
slabs by the z-ranges of its children. In each node v we store O(B) points
for each of v’s ©(B) children v;, namely the B points with the highest
y-coordinates in the z-range of v; (if existing) that have not been stored
in ancestors of v. We store the O(B?) points in the linear space static
structure discussed above (the “O(B?) structure”) such that a 3-sided
query on them can be answered in O(T'/B) I/Os. As in Section 3., we
can update the O(B?) structure in O(1) I/Os using an “update block”
and a global rebuilding technique. Since every point is stored in precisely
one O(B?) structure, the structure uses O(N/B) space in total.

To answer a 3-sided query (q1,q2,q3) we start at the root of the ex-
ternal priority search tree and proceed recursively to the appropriate
subtrees; when visiting a node v we query the O(B?)-structure and re-
port the relevant points, and then we advance the search to some of the
children of v. The search is advanced to child v; if v; is either along
the leftmost search path for g; or the rightmost search path for ¢o, or if
the entire set of points corresponding to v; in the O(B?)-structure were
reported—refer to Figure 1.12. The query procedure reports all points
in the query range since if we do not visit child v; corresponding to a
slab completely spanned by the interval [q1, g2, it means that at least
one of the points in the O(B?)-structure corresponding to v; does not
satisfy the query. This in turn means that none of the points in the sub-
tree rooted at v; can satisfy the query. That we use O(logg N + T'/B)
I/Os to answer a query can be seen as follows. In every internal node
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e ° e | I
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q; 9z
Figure 1.12 Internal node v with children vi, v2, ..., vs. The points in bold are

stored in the O(B?) structure. To answer a 3-sided query we report the relevant of
the O(B?) points and answer the query recursively in vs, v3, and vs. The query is not
extended to va because not all of the points from wa in the O(B?)-structure satisfy
the query.

v visited by the query procedure we spend O(T,/B) 1/Os, where T, is
the number of points reported. There are O(logz N) nodes visited on
the search paths in the tree to the leaf containing ¢; and the leaf con-
taining g2 and thus the number of I/Os used in these nodes adds up
to O(logg N + T'/B). Each remaining visited internal node v is not on
the search path but it is visited because ©(B) points corresponding to
it were reported when we visited its parent. Thus the cost of visiting
these nodes adds up to O(T'/B), even if we spend a constant number of
I/0Os in some nodes without finding ©(B) points to report. Note how
we again are using the filtering idea, that is, we are are charging some
of our search cost to the points we output as a result of the query.

To insert a point p = (z,y) in the external priority search tree we
search down the tree for the leaf containing x, until we reach the node
v where p needs to be inserted in the O(B?) structure. Insertion of p in
v (may) result in the O(B?) structure containing one too many points
from the slab corresponding to the child v; containing x. Therefore,
apart from inserting p in the O(B?) structure, we also remove the point
p’ with the lowest y-coordinate among the points corresponding to v;.
We insert p' recursively in the tree rooted in v;. Since we use O(1) I/Os
in each of the nodes on the search path, the insertion takes O(logg N)
I/Os. We also need to insert z in the base B-tree. This may result
in split and/or fuse operations and each such operation may require
rebuilding an O(B?) structure. Using weight-balanced B-tress, Arge
et al. (1999b) showed how the rebalancing after an insertion can be
performed in O(logg N) I/Os worst case. Deletions can be handled in
O(logg N) I/Os in a similar way.
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6. GENERAL 2D RANGE SEARCHING

After discussing 2- and 3-sided planar range queries we are now ready
to consider general (4-sided) range queries. Given a set of points in the
plane we want to be able to find all points contained in a query rect-
angle. While linear space and O(logg N + T//B) query structures exist
for the two special cases, Subramanian and Ramaswamy (1995) proved
that one cannot obtain an O(loggy N + T'/B) query bound using less
than 6(%) disk blocks.* This lower bound holds in a natural
external memo?y version of the pointer machine model (Chazelle 1990).
A similar bound in a slightly different model where the search compo-
nent of the query is ignored was proved by Arge et al. (1999b). This
indezability model was defined by Hellerstein et al. (1997) and consid-
ered by several authors (Kanellakis et al. 1996, Koutsoupias and Taylor
1998, Samoladas and Miranker 1998). Note that linear space and loga-
rithmic query structures for the range counting problem (where only the
number of points in the query rectangle, and not the points themselves,
need to be reported) can be developed in a slightly different model of
computation (see Agarwal et al. 2001a, Zhang et al. 2001, and references
therein).

Based on a sub-optimal linear space structure for answering 3-sided
queries, Subramanian and Ramaswamy (1995) developed the P-range
tree that uses optimal O(%) space but uses more than the op-
timal O(logg N + T'/B) 1/0s to answer a query. Using their optimal
structure for 3-sided queries, Arge et al. (1999b) obtained an optimal
structure. We discuss the structure below. In practical applications in-
volving massive datasets it is often crucial that external data structures
use linear space. We discuss this further in Section 9. Grossi and Ital-
iano (Grossi and Italiano 1999a;b) developed the elegant linear space
cross-tree data structure which answers queries in O(\/N/B + T/B)
I/Os. This is optimal for linear space data structures as e.g. proven by
Kanth and Singh (1999). The O-tree of Kanth and Singh (1999) obtains
the same bounds using ideas similar to the ones used by van Kreveld
and Overmars (1991) in divided k-d trees. Below, after discussing the
O(logg N +T'/B) query structure, we also discuss the cross-tree further.

Logarithmic query structure. The O(logg N + T/B) query data
structure is based on ideas from the corresponding internal memory data
structure due to Chazelle (1986). It uses both the external interval tree
discussed in Section 3. and the external priority search tree discussed

“In fact, this bound even holds for a query bound of O(logg N + T//B) for any constant c.
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in Section 5. The structure consists of a fan-out logg N base tree over
the z-coordinates of the N points. As usual an z-range is associated
with each node v and it is subdivided into loggz IV slabs by v’s chil-
dren vy, vy, ..., Vg, n- We store all the points in the z-range of v in
four secondary data structures associated with v. Two of the structures
are priority search trees for answering 3-sided queries—one for answer-
ing queries with the opening to the left and one for queries with the
opening to the right. We also store the points in a linear list sorted
by y-coordinate. For the fourth structure, we imagine linking together
for each child v; the points in the z-range of v; in y-order, producing a
polygonal line monotone with respect to the y-axis. We project all the
segments produced in this way onto the y-axis and store them in an ex-
ternal interval tree. With each segment endpoint we also store a pointer
to the corresponding point in a child node. Since we use linear space on
each of the O(logg . NNﬂ?I }ngﬂﬂﬂ%b&ﬂWlwﬁuﬁme
tree, the structure uses O( Tog l(z)i disk blocks in total.

To answer a 4-sided query q = fql, qg, q3,q4) we first find the topmost
node v in the base tree where the xz-range [q1,g2] of the query contains
a slab boundary. Consider the case where ¢; lies in the z-range of v;
and g lies in the z-range of v; refer to Figure 1.13. The query ¢ is
naturally decomposed into three parts, consisting of a part in v;, a part
in vj, and a part completely spanning nodes vy, for « < k£ < j. The
points contained in the first two parts can be found in O(logz N +T'/B)
I/Os using the 3-sided structures corresponding to v; and v;. To find
the points in the third part we query the interval tree associated with v
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Figure 1.18 The slabs corresponding
to a node v in the base tree. To an-
swer a query (qi,42,4s,qa) we need to
answer 3-sided queries on the points in
slab v; and slab v;, and a range query
on the points in slabs between v; and
vj.

Figure 1.14 Basic squares.
swer a query (qi,q2,qs,qs) we check
points in two vertical and two hori-
zontal slabs, and report points in ba-
sic squares completely covered by the

query.
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with the y-value ¢o. This way we obtain the O(logz N) segments in the
structure containing g9, and thus (a pointer to) the bottommost point
contained in the query for each of the nodes v;;1, vit2,...,vj_1. We
then traverse the j —i — 1 = O(logg N) relevant sorted lists and output
the remaining points using O(logz N +T'/B) 1/0s.

To insert or delete a point, we need to perform O(1) updates on each
of the O(log(N/B)/loglogy N) levels of the base tree. Each of these
updates takes O(logz N) I/Os. We also need to update the base tree.
Using a weight-balanced B-tree, Arge et al. (1999b) showed how this can
be done in O((logz N)(log %)/ loglog; N) 1/Os.

Linear space structure. The linear space cross-tree structure of
Grossi and Italiano (Grossi and Italiano 1999a;b) consists of two lev-
els. The lower level partitions the plane into ©(,/N/B) vertical slabs
and ©(,/N/B) horizontal slabs containing ©(v' N B) points each, form-
ing an irregular grid of ©(N/B) basic squares refer to Figure 1.14.
Each basic square can contain between 0 and /N/B points. The points
are grouped and stored according to the vertical slabs points in verti-
cally adjacent basic squares containing less than B points are grouped
together to form groups of ©(B) points and stored in blocks together.
The points in a basic square containing more than B points are stored in
a B-tree. Thus the lower level uses O(N/B) space. The upper level con-
sists of a linear space search structure which can be used to determine
the basic square containing a given point for now we can think of the
structure as consisting of a fan-out VB B-tree Ty on the /N/B verti-
cal slabs and a separate fan-out v/ B B-tree Ty on the \/N/B horizontal
slabs.

In order to answer a query (g1, g2, g3, q4) we use the upper level search
tree to find the vertical slabs containing ¢; and g3 and the horizontal
slabs containing g2 and ¢4 using O(logz N) I/Os. We then explicitly
check all points in these slabs and report all the relevant points. In

doing so we use O(VNB/B) = O(y/N/B) 1/0s to traverse the verti-
cal slabs and O(VNB/B + \/N/B) = O(y/N/B) 1/0s to traverse the
horizontal slabs (the \/N/B-term in the latter bound is a result of the

slabs being blocked vertically—a horizontal slab contains \/N/B basic
squares). Finally, we report all points corresponding to basic squares
fully covered by the query. To do so we use O(\/N/B + T/B) 1/0s
since the slabs are blocked vertically. In total we answer a query in
O(y/N/B+T/B) 1/0s.

In order to perform an update we need to find and update the relevant
basic square. We may also need to split slabs (insertion) or merge slabs
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with neighbor slabs (deletions). In order to do so efficiently while still
being able to answer a range query I/O-efficiently, the upper level is
actually implemented using a cross-tree Try. Thpy can be viewed as a
cross product of Ty and Tg: For each pair of nodes u € Ty and v € Ty
on the same level we have a node (u,v) in Ty, and for each pair of edges
(u,u’) € Ty and (v,v") € Ty we have an edge ((u,v), (u',v")) in Tyy.
Thus the tree has fan-out O(B) and uses O((\/N/B)?) = O(N/B) space.
Grossi and Italiano (Grossi and Italiano 1999a;b) showed how we can use
the cross-tree to search for a basic square in O(logyz N) I/Os and how the
full structure can be used to answer a range query in O(y/N/B +T/B)
I/0Os. They also showed that if T and 7Ty are implemented using weight-
balanced B-trees, the structure can be maintained in O(logg N) I/Os
during an update.

7. SPECIAL AND HIGHER-DIMENSIONAL
RANGE SEARCHING

As we have seen in the preceding sections, two-dimensional external
range searching is theoretically relatively well understood. In contrast,
little theoretical work has been done on higher-dimensional range search-
ing and on special cases of higher-dimensional range searching. In this
section we survey such results.

Range searching. Vengroff and Vitter (1996) presented a data struc-
ture for 3-dimensional range searching with a logarithmic query bound.
With recent modifications (Vitter 1999a) their structure answers queries
in O(logg N+T/B) 1/Os and uses O(% log® & /log log}; N) space. More
generally, they presented structures for answering (3 + k)-sided queries
(k of the dimensions, 0 < k < 3, have finite ranges) in O(logg N +T'/B)
I/Os using O(% logk X/ log logk, N) space.

As mentioned, space use is often as crucial as query time when ma-
nipulating massive datasets. The linear space cross-tree of Grossi and
Italiano (Grossi and Italiano 1999a;b), as well as the O-tree of Kanth and
Singh (1999), can be extended to support d-dimensional range queries
in O((N/B)'~"*+T/B) 1/Os. Updates can be performed in O(logy N)
I/0Os. Divide and merge operations can also be performed on the cross-
tree in O((N/B)'~'/¢ + T/B) 1/Os and the structure can be used in
the design of dynamic data structures for several other problems (Grossi
and Italiano 1999a;b).

Halfspace range searching. Given a set of points in d-dimensional
space, a halfspace range query asks for all points on one side of a
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query hyperplane. Halfspace range searching is the simplest form of
non-isothetic (non-orthogonal) range searching. The problem was first
considered in external memory by Franciosa and Talamo (1994; 1997).
Based on an internal memory structure due to Chazelle et al. (1985),
Agarwal et al. (2000b) described a simple optimal O(loggz N + T'/B)
query, O(N/B) space structure for the 2-dimensional case. The number
of I/Os used to construct the structure is O(N (log N)logg N). They
also described a structure for the 3-dimensional case, answering queries
in O(logg N + T/B) expected 1/Os but requiring O((N/B) log(N/B))
space. This structure is based on an internal memory result of Chan
(2000) and the expected number of I/Os needed to construct the struc-
ture is O((N/B)(log(N/B))logg N).

Based on the internal memory partition trees of Matousek (1992),
Agarwal et al. (2000b) also gave a linear space data structure for answer-
ing d-dimensional halfspace range queries in O((N/B)'~ Y% + T/B)
I/Os for any constant ¢ > 0. The structure can be constructed in
O(Nlog N) I/Os and using partial rebuilding it can support updates
in O((log(N/B))logg N) expected I/Os amortized. Using an improved
O(N logg N) construction algorithm, Agarwal et al. (2000a) obtained
an O(log% N) amortized and expected update 1/O-bound for the pla-
nar case. Agarwal et al. (2000b) also showed how the query bound of
the structure can be improved at the expense of extra space. They also
discussed how their linear space structure can be used to answer very
general queries more precisely, how all points within a query polyhe-
dron with m faces can be found in O(m(N/B)'~'/%¢ 4+ T/B) 1/Os.

Range searching on moving points. Recently there has been an
increasing interest in external memory data structures storing continu-
ously moving objects. A key goal is to develop structures that only need
to be changed when the velocity or direction of an object changes (as
opposed to continuously).

Kollios et al. (1999b) presented initial work on storing moving points
in the plane such that all points inside a query range at query time ¢ can
be reported in a provably efficient number of I/Os. Their results were
improved and extended by Agarwal et al. (2000a) who developed a linear
space structure that answers a query in O((N/B)Y/?*¢ +T/B) 1/0s for
any constant ¢ > 0. A point can be updated using O(log% N) 1/0Os.
The structure is based on partition trees and can also be used to answer
queries where two time values ¢, and ¢, are given and we want to find all
points that lie in the query range at any time between ¢; and 9. Using
the notion of kinetic data structures introduced by Basch et al. (1999), as
well as a persistent version of the range searching structure by Arge et al.
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(1999b) discussed in Section 6., Agarwal et al. (2000a) also developed
a number of other structures with improved query performance. One
of these structures has the property that queries in the near future are
answered faster than queries further away in time. Further structures
with this property were developed by Agarwal et al. (2001c).

8. PROXIMITY QUERIES

Proximity queries such as nearest neighbor and closest pair queries
have become increasingly important in recent years, for example because
of their applications in similarity search and data mining.

Callahan et al. (1995) developed the first worst-case efficient external
proximity query data structures. Their structures are based on an ex-
ternal version of the topology trees of Frederickson (1993) called topology
B-trees, which can be used to dynamically maintain arbitrary binary
trees 1/O-efficiently. Using topology B-trees and ideas from an internal
structure of Bespamyatnikh (1998), Callahan et al. (1995) designed a
linear space data structure for dynamically maintaining the closest pair
of a set of points in d-dimensional space. The structure supports up-
dates in O(logz N) I/Os. The same result was obtained by Govindara-
jan et al. (2000) using the well-separated pair decomposition of Callahan
and Kosaraju (Callahan and Kosaraju 1995a;b). Govindarajan et al.
(2000) also show how to dynamically maintain a well-separated pair de-
composition of a set of d-dimensional points using O(loggz N) 1/Os per
update.

Using topology B-trees and ideas from an internal structure due to
Arya et al. (1994), Callahan et al. (1995) developed a linear space data
structure for the dynamic approzimate nearest neighbor problem. Given
a set of points in d-dimensional space, a query point p, and a parameter
€, the approximate nearest neighbor problem consists of finding a point
g with distance at most (1 + €) times the distance of the actual near-
est neighbor of p. The structure answers queries and supports updates
in O(logg N) I/Os. Agarwal et al. (2000a) designed I/O-efficient data
structures for answering approximate nearest neighbor queries on a set
of moving points.

In some applications we are interested in finding not only the nearest
but all the k nearest neighbors of a query point. Based on their 3-
dimensional halfspace range searching structure, Agarwal et al. (2000b)
described a structure that uses O((N/B)log(N/B)) space to store N
points in the plane such that a k nearest neighbors query can be answered

in (logg N + k/B) 1/0s.
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9. PRACTICAL GENERAL-PURPOSE
STRUCTURES

Although several of the worst-case efficient (and often optimal) data
structures discussed in the previous sections are simple enough to be of
practical interest, they are often not the obvious choices when decid-
ing which data structures to use in a real-world application. There are
several reasons for this, one of the most important being that in real
applications involving massive datasets it is practically feasible to use
data structures of size ¢N/B only for a very small constant c¢. Since
fundamental lower bounds often prevent logarithmic worst-case search
cost for even relatively simple problems when restricting the space use
to linear, we need to develop heuristic structures which perform well in
most practical cases. Space restrictions also motivate us not to use struc-
tures for single specialized queries but instead design general structures
that can be used to answer several different types of queries. Finally,
implementation considerations often motivate us to sacrifice worst-case
efficiency for simplicity. All of these considerations have led to the devel-
opment of a large number of general-purpose data structures that often
work well in practice, but which do not come with worst-case perfor-
mance guarantees. Below we quickly survey the major classes of such
structures. The reader is referred to more complete surveys for details
(Agarwal and Erickson 1999, Gaede and Giinther 1998, Nievergelt and
Widmayer 1997, Greene 1989, Orenstein 1990, Samet 1990b).

Range searching in d-dimensions is the most extensively researched
problem. A large number of structures have been developed for this
problem, including space filling curves (see e.g. Orenstein 1986, Abel
and Mark 1990, Asano et al. 1997), grid-files (Nievergelt et al. 1984,
Hinrichs 1985), various quad-trees (Samet 1990a;b), kd-B tress (Robin-
son 1981)—and variants like Buddy-trees (Seeger and Kriegel 1990), hB-
trees (Lomet and Salzberg 1990, Evangelidis et al. 1997) and cell-trees
(Giinther 1989) and various R-trees (Guttman 1984, Greene 1989, Sel-
lis et al. 1987, Beckmann et al. 1990, Kamel and Faloutsos 1994). Of-
ten these structures are broadly classified into two types, namely space
driven structures (like quad-trees and grid-files), which partition the
embedded space containing the data points and data driven structures
(like kd-B trees and R-trees), which partition the data points themselves.
Agarwal et al. (2001b) described a general framework for efficient con-
struction and updating of many of the above structures.

As mentioned above, we often want to be able to answer a very diverse
set of queries, like halfspace range queries, general polygon range queries,
and point location queries, on a single data structure. Many of the above
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data structures can easily be used to answer many such different queries
and that is one main reason for their practical success. Recently, there
has also been a lot of work on extensions—or even new structures—
which also support e.g. moving objects (see e.g. Wolfson et al. 1998;
1999, Salzberg and Tsotras 1999, Kollios et al. 1999a, Saltenis et al.
2000, Pfoser et al. 2000, Tayeb et al. 1998, and references therein) or
proximity queries (see e.g. Berchtold et al. 1997; 1998b; 1996, Ciacca
et al. 1997, Korn et al. 1996, Papadopoulos and Manolopoulos 1997,
Roussopoulos et al. 1995, Seidl and Kriegel 1997, Sproull 1991, White
and Jain 1996, Katayama and Satoh 1997, Hjaltason and Samet 1995,
Gaede and Gunther 1998, Agarwal and Erickson 1999, Nievergelt and
Widmayer 1997, and references therein). However, as discussed, most
often no guarantee on the worst-case query performance is provided for
these structures.

So far we have mostly discussed point data structures. In general,
we are interested in storing objects such as lines and polyhedra with
a spatial extent. Like in the point case, a large number of heuristic
structures, many of which are variations of the ones mentioned above,
have been proposed for such objects. However, almost no worst-case
efficient structures are known. In practice a filtering/refinement method
is often used when managing objects with spatial extent. Instead of
directly storing the objects in the data structure we store the minimal
bounding (azis-parallel) rectangle containing each object together with a
pointer to the object itself. When answering a query we first find all the
minimal bounding rectangles fulfilling the query (the filtering step) and
then we retrieve the objects corresponding to these rectangles and check
each of them to see if they fulfill the query (the refinement step). One
way of designing data structures for rectangles (or even more general
objects) is to transform them into points in higher-dimensional space
and store these points in one of the point data structures discussed above
(see e.g. Gaede and Giinther 1998, Nievergelt and Widmayer 1997, for
a survey). However, a structure based on another idea has emerged as
especially efficient for storing and querying minimal bounding rectangles.
Below we further discuss this so-called R-tree and its many variants.

R-trees. The R-tree, originally proposed by Guttman (1984), is a mul-
tiway tree very similar to a B-tree; all leaf nodes are on the same level of
the tree and a leaf contains O(B) data rectangles. Each internal node v
(except maybe for the root) has ©(B) children. For each of its children
v;, v contains the minimal bounding rectangle of all the rectangles in
the tree rooted in v;. An R-tree has height O(logz N) and uses O(N/B)
space. An example of an R-tree is shown in Figure 1.15. Note that there
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Figure 1.15 R-tree constructed on rectangles A, B, C, ... | I (B = 3).

is no unique R-tree for a given set of data rectangles and that minimal
bounding rectangles stored within an R-tree node can overlap.

In order to query an R-tree to find, say, all rectangles containing a
query point p, we start at the root and recursively visit all children whose
minimal bounding rectangle contains p. This way we visit all internal
nodes whose minimal bounding rectangle contains p. There can be many
more such nodes than actual data rectangles containing p and intuitively
we want the minimal bounding rectangles stored in an internal node to
overlap as little as possible in order to obtain a query efficient structure.

An insertion can be performed in O(logg N) I/Os like in a B-tree.
We first traverse the path from the root to the leaf we choose to insert
the new rectangle into. The insertion might result in the need for node
splittings on the same root-leaf path. As insertion of a new rectangle
can increase the overlap in a node, several heuristics for choosing which
leaf to insert a new rectangle into, as well as for splitting nodes during
rebalancing, have been proposed (Greene 1989, Sellis et al. 1987, Beck-
mann et al. 1990, Kamel and Faloutsos 1994). The R*-tree variant of
Beckmann et al. (1990) seems to result in the best performance in many
cases. Deletions are also performed similarly to deletions in a B-tree
but we cannot guarantee an O(logz N) bound since finding the data
rectangle to delete may require many more I/0Os. Rebalancing after a
deletion can be performed by merging nodes like in a B-tree but some
R-tree variants instead delete a node when it underflows and reinsert
its children into the tree (often referred to as “forced reinsertion”). The
idea is to try to obtain a better structure by forcing a global reorgani-
zation of the structure instead of the local reorganization a node merge
constitutes.

Constructing an R-tree using repeated insertion takes O(N loggz N)
I/0Os and does not necessarily result in a good tree in terms of query per-
formance. Therefore several sorting based O(% log /i X)1/0 construc-
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tion algorithms have been proposed (Roussopoulos and Leifker 1985,
Kamel and Faloutsos 1993, DeWitt et al. 1994, Leutenegger et al. 1996,
Berchtold et al. 1998a). These algorithms are more than a factor of B
faster than the repeated insertion algorithm and several of them produce
an R-tree with practically better query performance than an R-tree built
by repeated insertion. Still, no better than a linear worst-case query 1/0-
bound has been proven for any of them. Very recently, however, de Berg
et al. (2000) and Agarwal et al. (2001d) presented R-tree construction
algorithms resulting in R-trees with provably efficient worst-case query
performance measured in terms of certain parameters describing the in-
put data. They also discussed how these structures can be efficiently
maintained dynamically.

10. BUFFER TREES

In internal memory we can sort N elements in optimal O(N log N)
time using O(N) operations on a dynamic balanced search tree. Using
the same algorithm and a B-tree in external memory results in an al-
gorithm using O(N logz N) 1/Os. This is a factor of —1282 N

10811/ 5(N/B) WY
from optimal. In order to obtain an optimal sorting algorithm we need
a structure that supports updates in O(%logM/B ) 1/Os. The inef-
ficiency of the B-tree sorting algorithm is a consequence of the B-tree
being designed to be used in an “on-line” setting where queries should
be answered immediately updates and queries are handled on an indi-
vidual basis. This way we are not able to take full advantage of the large
internal memory. It turns out that in an “off-line” environment where
we are only interested in the overall I/O use of a series of operations and
where we are willing to relax the demands on the query operations, we
can develop data structures on which a series of N operations can be
performed in O(% logr/B ) 1/0s in total. To do so we use the buffer
tree technique developed by Arge (1995a).

Basically the buffer tree is just a fan-out ©(M/B) B-tree where each
internal node has a buffer of size ©(M). The tree has height O(log/,/ 5 %);
refer to Figure 1.16. Operations are performed in a “lazy” manner: In
order to perform an insertion we do not (like in a normal B-tree) search
all the way down the tree for the relevant leaf. Instead, we wait until
we have collected a block of insertions and then we insert this block in
the buffer of the root (which is stored on disk). When a buffer “runs
full” its elements are “pushed” one level down to buffers on the next
level. We can do so in O(M/B) 1/0s since the elements in the buffer fit
in main memory and the fan-out of the tree is O(M/B). If the buffer
of any of the nodes on the next level becomes full by this process, the
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buffer-emptying process is applied recursively. Since we push ©(M) ele-
ments one level down the tree using O(M/B) 1/Os (that is, we use O(1)
I/Os to push one block one level down), we can argue that every block
of elements is touched a constant number of times on each of the levels
of the tree. Thus, not counting rebalancing, inserting N elements re-
quires O (% log X)1/0s in total, or O(4 log /i &) amortized. Arge
(1995a) showed that rebalancing can be handled in the same bound.

The basic buffer tree supporting insertions only can be used in an
I/O-efficient sorting algorithm. Arge (1995a) showed how deletions and
(one-dimensional) range queries can also be supported I/O-efficiently
using buffers. The range queries are batched in the sense that we do
not obtain the result of a query immediately. Instead parts of the result
will be reported at different times as the query is pushed down the tree.
This means that the data structure can only be used in algorithms where
future updates and queries do not depend on the result of the queries.
Luckily this is the case in many plane-sweep algorithms (Edelsbrunner
and Overmars 1985, Arge 1995a). In general, problems where the entire
sequence of updates and queries is known in advance, and the only re-
quirement on the queries is that they must all eventually be answered,
are known as batched dynamic problems (Edelsbrunner and Overmars
1985). Using the idea of multislabs discussed in Section 3., Arge (1995a)
also showed how to implement a buffered segment tree, and Arge et al.
(1998) showed how to use this data structure in a technique for solving
a general class of high-dimensional problems.

The buffer tree technique has been used to develop several data struc-
tures which in turn have been used to develop algorithms in many differ-
ent areas (Arge et al. 1995; 1997; 1999a, Kumar and Schwabe 1996, Arge
1995b, Fadel et al. 1999, Buchsbaum et al. 2000, van den Bercken et al.
1997; 1998, Hutchinson et al. 1997, Brengel et al. 1999, Sanders 1999).
External buffered priority queues have been extensively researched be-

[ M elements

O(logrr/

Figure 1.16 Buffer tree; Fan-out M /B tree where each node has a buffer of size M.
Operations are performed in a lazy way using the buffers.
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cause of their applications in graph algorithms. Arge (1995a) showed
how to perform deletemin operations on a basic buffer tree in amortized
O(% log s/ %) I/0Os. Note that in this case the deletemin occurs right
away, that is, it is not batched. This is accomplished by periodically com-
puting the O(M) smallest elements in the structure and storing them
in internal memory. Fadel et al. (1999) developed a similar buffered
heap. Using a partial rebuilding idea, Brodal and Katajainen (1998)
developed a worst-case efficient external priority queue. A sequence of
B operations on this structure requires O(logy 5 X) 1/Os. Using the
buffer tree technique on a tournament tree, Kumar and Schwabe (1996)
developed a priority queue supporting update operations in O(% log %)
I/Os. They also showed how to use their structure in several efficient ex-
ternal graph algorithms (see e.g Abello et al. 1998, Agarwal et al. 1998,
Arge et al. 2000b, Buchsbaum et al. 2000, Chiang et al. 1995, Hutchin-
son et al. 1999, Kumar and Schwabe 1996, Maheshwari and Zeh 1999,
Munagala and Ranade 1999, Nodine et al. 1996, Ullman and Yannakakis
1991, Maheshwari and Zeh 2001, Feuerstein and Marchetti-Spaccamela
1993, Arge et al. 2000a; 2001, Meyer 2001, Zeh 2001, for other results
on external graph algorithms and data structures). Note that if the
priority of an element is known, an update operation can be performed
in O(%logM/B X) 1/Os on a buffer tree using a delete and an insert
operation.

11. CONCLUSIONS

In this chapter we have discussed recent advances in the develop-
ment of provably efficient external memory dynamic data structures,
mainly for geometric objects. Such structures are often crucial in mas-
sive dataset applications. We have discussed some of the most important
techniques utilized to obtain efficient structures.

Even though a lot of progress has been made, many problems still
remain open. For example, O(logz N)-query and space efficient struc-
tures still need to be found for many higher-dimensional problems. The
practical performance of many of the worst-case efficient structures also
need to be researched.

Acknowledgments

The author thanks the National Science Foundation for partially supporting this
work through ESS grant EIA 9870734, RI grant EIA 9972879 and CAREER grant
ETA 9984099, and Tammy Bailey, Tavi Procopiuc, Jan Vahrenhold, as well as an

anonymous reviewer, for comments on earlier drafts of this chapter.

www.manaraa.com



Bibliography

Abel, D. J. and Mark, D. M. (1990). A comparative analysis of some
two-dimensional orderings. Intl. J. Geographic Informations Systems,
4(1):21 31.

Abello, J., Buchsbaum, A. L., and Westbrook., J. R. (1998). A functional
approach to external graph algorithms. In Proc. Annual European
Symposium on Algorithms, LNCS 1461, pages 332 343.

Agarwal, P. K., Arge, L., Brodal, G. S., and Vitter, J. S. (1999). 1/0O-
efficient dynamic point location in monotone planar subdivisions. In
Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 1116-1127.

Agarwal, P. K., Arge, L., and Erickson, J. (2000a). Indexing moving
points. In Proc. ACM Symp. Principles of Database Systems, pages
175 186.

Agarwal, P. K., Arge, L., Erickson, J., Franciosa, P., and Vitter, J.
(2000b). Efficient searching with linear constraints. Journal of Com-
puter and System Sciences, 61(2):194 216.

Agarwal, P. K., Arge, L., and Govindarajan, S. (2001a). External range
counting. Manuscript.

Agarwal, P. K., Arge, L., Murali, T. M., Varadarajan, K., and Vitter,
J. S. (1998). I/O-efficient algorithms for contour line extraction and
planar graph blocking. In Proc. ACM-SIAM Symp. on Discrete Algo-
rithms, pages 117 126.

Agarwal, P. K., Arge, L., Procopiuc, O., and Vitter, J. S. (2001b). A
framework for index bulk loading and dynamization. In Proc. An-
nual International Colloquium on Automata, Languages, and Pro-
gramming.

Agarwal, P. K., Arge, L., and Vahrenhold, J. (2001¢). A time responsive
indexing scheme for moving points. In Proc. Workshop on Algorithms
and Data Structures.

Agarwal, P. K., de Berg, M., Gudmundsson, J., Hammer, M., and
Haverkort, H. J. (2001d). Box-trees and R-trees with near-optimal
query time. In Proc. ACM Symp. on Computational Geometry, pages
124 133.

Agarwal, P. K. and Erickson, J. (1999). Geometric range searching and
its relatives. In Chazelle, B., Goodman, J. E., and Pollack, R., edi-
tors, Advances in Discrete and Computational Geometry, volume 223
of Contemporary Mathematics, pages 1 56. American Mathematical
Society, Providence, RI.

33

www.manaraa.com



34

Aggarwal, A. and Vitter, J. S. (1988). The Input/Output complex-
ity of sorting and related problems. Communications of the ACM,
31(9):1116-1127.

Arge, L. (1995a). The buffer tree: A new technique for optimal 1/0O-
algorithms. In Proc. Workshop on Algorithms and Data Structures,
LNCS 955, pages 334-345. A complete version appears as BRICS
technical report RS-96-28, University of Aarhus.

Arge, L. (1995b). The I/O-complexity of ordered binary-decision dia-
gram manipulation. In Proc. Int. Symp. on Algorithms and Computa-
tion, LNCS 1004, pages 82-91. A complete version appears as BRICS
technical report RS-96-29, University of Aarhus.

Arge, L., Brodal, G. S., and Toma, L. (2000a). On external memory
MST, SSSP and multi-way planar graph separation. In Proc. Scandi-
navian Workshop on Algorithms Theory.

Arge, L., Ferragina, P., Grossi, R., and Vitter, J. (1997). On sorting
strings in external memory. In Proc. ACM Symp. on Theory of Com-
putation, pages H40-548.

Arge, L., Hinrichs, K. H., Vahrenhold, J., and Vitter, J. S. (1999a).
Efficient bulk operations on dynamic R-trees. In Proc. Workshop on
Algorithm Engineering, LNCS 1619, pages 328-347.

Arge, L., Meyer, U., Toma, L., and Zeh, N. (2001). On external-memory
planar depth first search. In Proc. Workshop on Algorithms and Data
Structures.

Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., and Vitter, J. S.
(1998). Theory and practice of I/O-efficient algorithms for multidi-
mensional batched searching problems. In Proc. ACM-SIAM Symp.
on Discrete Algorithms, pages 685—694.

Arge, L., Samoladas, V., and Vitter, J. S. (1999b). On two-dimensional
indexability and optimal range search indexing. In Proc. ACM Symp.
Principles of Database Systems, pages 346-357.

Arge, L. and Teh, S.-M. (2000). Unpublished results.

Arge, L., Toma, L., and Vitter, J. S. (2000b). I/O-efficient algorithms
for problems on grid-based terrains. In Proc. Workshop on Algorithm
Engineering and Fxperimentation.

www.manaraa.com



BIBLIOGRAPHY 35

Arge, L. and Vahrenhold, J. (2000). I/O-efficient dynamic planar point
location. In Proc. ACM Symp. on Computational Geometry, pages
191-200.

Arge, L., Vengroff, D. E., and Vitter, J. S. (1995). External-memory al-
gorithms for processing line segments in geographic information sys-
tems. In Proc. Annual European Symposium on Algorithms, LNCS
979, pages 295-310. To appear in special issues of Algorithmica on
Geographical Information Systems.

Arge, L. and Vitter, J. S. (1996). Optimal dynamic interval management
in external memory. In Proc. IEEE Symp. on Foundations of Comp.
Sci., pages 560-569.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu,
A. (1994). An optimal algorithm for approximate nearest neighbor
searching. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms,
pages 573-582.

Asano, T., Ranjan, D., Roos, T., Welzl, E., and Widmayer, P. (1997).
Space-filling curves and their use in the design of geometric data struc-
tures. Theoret. Comput. Sci., 181(1):3-15.

Basch, J., Guibas, L. J., and Hershberger, J. (1999). Data structures for
mobile data. Journal of Algorithms, 31(1):1 28.

Baumgarten, H., Jung, H., and Mehlhorn, K. (1994). Dynamic point
location in general subdivisions. Journal of Algorithms, 17:342 380.

Bayer, R. and McCreight, E. (1972). Organization and maintenance of
large ordered indexes. Acta Informatica, 1:173 189.

Becker, B., Gschwind, S., Ohler, T., Seeger, B., and Widmayer, P.
(1996). An asymptotically optimal multiversion B-tree. VLDB Jour-
nal, 5(4):264-275.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990).
The R*-tree: An efficient and robust access method for points and
rectangles. In Proc. SIGMOD Intl. Conf. on Management of Data,
pages 322-331.

Bender, M. A., Demaine, E. D., and Farach-Colton, M. (2000). Cache-
oblivious B-trees. In Proc. IEEE Symp. on Foundations of Comp.
Sci., pages 339-409.

Bentley, J. L. (1979). Decomposable searching problems. Information
Processing Letters, 8(5):244-251.

www.manaraa.com



36

Berchtold, S., Bohm, C., Keim, D. A., and Kriegel, H.-P. (1997). A cost
model for nearest neighbor search in high-dimensional data spaces. In
Proc. ACM Symp. Principles of Database Systems, pages 78-86.

Berchtold, S., Bohm, C., and Kriegel, H.-P. (1998a). Improving the
query performance of high-dimensional index structures by bulk load

operations. In Proc. Conference on Extending Database Technology,
LNCS 1377, pages 216-230.

Berchtold, S., Ertl, B., Keim, D. A., Kriegel, H.-P., and Seidl, T. (1998b).
Fast nearest neighbor search in high-dimensional spaces. In Proc.
IEEE International Conference on Data Engineering, pages 209-218.

Berchtold, S., Keim, D. A., and Kriegel, H.-P. (1996). The X-tree:
An index structure for high-dimensional data. In Proc. International
Conf. on Very Large Databases, pages 28-39.

Bespamyatnikh, S. N. (1998). An optimal algorithm for closets pair
maintenance. Discrete and Computational Geometry, 19:175 195.

Blankenagel, G. and Giiting, R. H. (1990). XP-trees External priority
search trees. Technical report, FernUniversitit Hagen, Informatik-
Bericht Nr. 92.

Brengel, K., Crauser, A., Ferragina, P., and Meyer, U. (1999). An ex-
perimental study of priority queues in external memory. In Proc.
Workshop on Algorithm Engineering, LNCS 1668, pages 345 358.

Brodal, G. S. and Katajainen, J. (1998). Worst-case efficient external-
memory priority queues. In Proc. Scandinavian Workshop on Algo-
rithms Theory, LNCS 1432, pages 107 118.

Buchsbaum, A. L., Goldwasser, M., Venkatasubramanian, S., and West-
brook, J. R. (2000). On external memory graph traversal. In Proc.
ACM-SIAM Symp. on Discrete Algorithms, pages 859-860.

Callahan, P., Goodrich, M. T., and Ramaiyer, K. (1995). Topology B-
trees and their applications. In Proc. Workshop on Algorithms and
Data Structures, LNCS 955, pages 381-392.

Callahan, P. B. and Kosaraju, S. R. (1995a). Algorithms for dynamic
closest-pair and n-body potential fields. In Proc. 6th ACM-SIAM
Sympos. Discrete Algorithms, pages 263-272.

Callahan, P. B. and Kosaraju, S. R. (1995b). A decomposition of mul-
tidimensional point sets with applications to k-nearest-neighbors and
n-body potential fields. Journal of the ACM, 42(1):67-90.

www.manaraa.com



BIBLIOGRAPHY 37

Chan, T. M. (2000). Random sampling, halfspace range reporting, and
construction of (< k)-levels in three dimensions. SIAM Journal of
Computing, 30(2):561-575.

Chazelle, B. (1986). Filtering search: a new approach to query-
answering. SIAM J. Comput., 15(3):703-724.

Chazelle, B. (1990). Lower bounds for orthogonal range searching: I.
the reporting case. Journal of the ACM, 37(2):200-212.

Chazelle, B. and Guibas, L. J. (1986). Fractional cascading: 1. A data
structuring technique. Algorithmica, 1:133-162.

Chazelle, B., Guibas, L. J., and Lee, D. T. (1985). The power of geo-
metric duality. BIT, 25(1):76-90.

Cheng, S. W. and Janardan, R. (1992). New results on dynamic planar
point location. SIAM J. Comput., 21(5):972-999.

Chiang, Y.-J., Goodrich, M. T., Grove, E. F., Tamassia, R., Vengroff,
D. E., and Vitter, J. S. (1995). External-memory graph algorithms.
In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 139-149.

Chiang, Y.-J. and Silva, C. T. (1997). I/O optimal isosurface extraction.
In Proc. IEEE Visualization, pages 293-300.

Chiang, Y.-J. and Silva, C. T. (1999). External memory techniques
for isosurface extraction in scientific visualization. In Abello, J. and
Vitter, J. S., editors, External memory algorithms and visualization,
pages 247-277. American Mathematical Society, DIMACS series in
Discrete Mathematics and Theoretical Computer Science.

Chiang, Y.-J., Silva, C. T., and Schroeder, W. J. (1998). Interactive
out-of-core isosurface extraction. In Proc. IEEE Visualization, pages
167-174.

Ciacca, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access
method for similarity search in metric spaces. In Proc. International
Conf. on Very Large Databases, pages 426—435.

Comer, D. (1979). The ubiquitous B-tree. ACM Computing Surveys,
11(2):121-137.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction
to Algorithms. The MIT Press, Cambridge, Mass.

www.manaraa.com



38

Crauser, A. and Ferragina, P. (1999). On constructing suffix arrays in ex-
ternal memory. In Proc. Annual European Symposium on Algorithms,
LNCS, 1643, pages 224-235.

Crauser, A., Ferragina, P., Mehlhorn, K., Meyer, U., and Ramos, E.
(1998). Randomized external-memory algorithms for some geometric
problems. In Proc. ACM Symp. on Computational Geometry, pages
259-268.

de Berg, M., Gudmundsson, J., Hammar, M., and Overmars, M. (2000).
On R-trees with low stabbing number. In Proc. Annual Furopean
Symposium on Algorithms, pages 167-178.

DeWitt, D. J., Kabra, N., Luo, J., Patel, J. M., and Yu, J.-B. (1994).
Client-server paradise. In Proceedings of VLDB Conference, pages
558-569.

Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. (1989). Making
data structures persistent. Journal of Computer and System Sciences,
38:86—-124.

Edelsbrunner, H. (1983a). A new approach to rectangle intersections,
part I. Int. J. Computer Mathematics, 13:209-219.

Edelsbrunner, H. (1983b). A new approach to rectangle intersections,
part II. Int. J. Computer Mathematics, 13:221-229.

Edelsbrunner, H. and Overmars, M. (1985). Batched dynamic solutions
to decomposable searching problems. Journal of Algorithms, 6:515—
542,

Evangelidis, G., Lomet, D., and Salzberg, B. (1997). The hb"-tree:
A multi-attribute index supporting concurrency, recovery and node
consolidation. The VLDB Journal, 6(1):1-25.

Fadel, R., Jakobsen, K. V., Katajainen, J., and Teuhola, J. (1999). Heaps
and heapsort on secondary storage. Theoretical Computer Science,
220(2):345-362.

Farach, M., Ferragina, P., and Muthukrishnan, S. (1998). Overcoming
the memory bottleneck in suffix tree construction. In Proc. IEEE
Symp. on Foundations of Comp. Sci., pages 174-183.

Ferragina, P. and Grossi, R. (1995). A fully-dynamic data structure
for external substring search. In Proc. ACM Symp. on Theory of
Computation, pages 693—-702.

www.manaraa.com



BIBLIOGRAPHY 39

Ferragina, P. and Grossi, R. (1996). Fast string searching in secondary
storage: Theoretical developments and experimental results. In Proc.
ACM-SIAM Symp. on Discrete Algorithms, pages 373-382.

Ferragina, P. and Luccio, F. (1998). Dynamic dictionary matching in
external memory. Information and Computation, 146(2):85-99.

Feuerstein, E. and Marchetti-Spaccamela, A. (1993). Memory paging
for connectivity and path problems in graphs. In Proc. Int. Symp. on
Algorithms and Computation, LNCS 762, pages 416-425.

Franciosa, P. and Talamo, M. (1997). Time optimal halfplane search on
external memory. Unpublished manuscript.

Franciosa, P. G. and Talamo, M. (1994). Orders, k-sets and fast halfplane
search on paged memory. In Proc. Workshop on Orders, Algorithms
and Applications (ORDAL’94), LNCS 831, pages 117 127.

Frederickson, G. N. (1993). A structure for dynamically maintaining
rooted trees. In Proc. ACM-SIAM Symp. on Discrete Algorithms,
pages 175 184.

Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. (1999).
Cache-oblivious algorithms. In Proc. IEEE Symp. on Foundations of
Comp. Sci., pages 285 298.

Gaede, V. and Giinther, O. (1998). Multidimensional access methods.
ACM Computing Surveys, 30(2):170-231.

Goodrich, M. T., Tsay, J.-J., Vengroff, D. E., and Vitter, J. S. (1993).
External-memory computational geometry. In Proc. IEEE Symp. on
Foundations of Comp. Sci., pages 714-723.

Govindarajan, S., Lukovszki, T., Maheshwari, A., and Zeh, N. (2000).
I/O-efficient well-separated pair decomposition and its applications.
In Proc. Annual European Symposium on Algorithms, pages 220-231.

Greene, D. (1989). An implementation and performance analysis of
spatial data access methods. In Proc. IEEE International Conference
on Data Engineering, pages 606-615.

Grossi, R. and Italiano, G. F. (1999a). Efficient cross-tree for ex-
ternal memory. In Abello, J. and Vitter, J. S., editors, FEzxter-
nal Memory Algorithms and Visualization, pages 87 106. Ameri-
can Mathematical Society, DIMACS series in Discrete Mathemat-
ics and Theoretical Computer Science. Revised version available at
ftp://ftp.di.unipi.it/pub/techreports/ TR-00-16.ps.Z.

www.manaraa.com



40

Grossi, R. and Italiano, G. F. (1999b). Efficient splitting and merging
algorithms for order decomposable problems. Information and Com-
putation, 154(1):1-33.

Gunther, O. (1989). The design of the cell tree: An object-oriented
index structure for geometric databases. In Proc. IEEFE International
Conference on Data Engineering, pages 598 605.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial
searching. In Proc. SIGMOD Intl. Conf. on Management of Data,
pages 47 57.

Hellerstein, J. M., Koutsoupias, E., and Papadimitriou, C. H. (1997).
On the analysis of indexing schemes. In Proc. ACM Symp. Principles
of Database Systems, pages 249 256.

Hinrichs, K. H. (1985). The grid file system: Implementation and case
studies of applications. PhD thesis, Dept. Information Science, ETH,
Zirich.

Hjaltason, G. R. and Samet, H. (1995). Ranking in spatial databases.
In Proc. of Advances in Spatial Databases, LNCS 951, pages 83 95.

Huddleston, S. and Mehlhorn, K. (1982). A new data structure for
representing sorted lists. Acta Informatica, 17:157 184.

Hutchinson, D., Maheshwari, A., Sack, J.-R., and Velicescu, R. (1997).
Early experiences in implementing the buffer tree. In Proc. Workshop
on Algorithm Engineering, pages 92 103.

Hutchinson, D., Maheshwari, A., and Zeh, N. (1999). An external-
memory data structure for shortest path queries. In Proc. Annual
Combinatorics and Computing Conference, LNCS 1627, pages 51 60.

Icking, C., Klein, R., and Ottmann, T. (1987). Priority search trees in
secondary memory. In Proc. Graph-Theoretic Concepts in Computer
Science, LNCS 814, pages 84 93.

Kamel, I. and Faloutsos, C. (1993). On packing R-trees. In Proc. In-
ternational Conference on Information and Knowledge Management,
pages 490 499.

Kamel, I. and Faloutsos, C. (1994). Hilbert R-tree: An improved R-tree
using fractals. In Proc. International Conf. on Very Large Databases,
pages 500-509.

www.manaraa.com



BIBLIOGRAPHY 41

Kanellakis, P. C., Ramaswamy, S., Vengroff, D. E., and Vitter, J. S.
(1996). Indexing for data models with constraints and classes. Journal
of Computer and System Sciences, 52(3):589-612.

Kanth, K. V. R. and Singh, A. K. (1999). Optimal dynamic range
searching in non-replicating index structures. In Proc. International
Conference on Database Theory, LNCS 1540, pages 257 276.

Katayama, N. and Satoh, S. (1997). The SR-tree: An index structure
for high-dimensional nearest-neighbor queries. In Proc. SIGMOD Intl.
Conf. on Management of Data, pages 369-380.

Knuth, D. E. (1998). Sorting and Searching, volume 3 of The Art of
Computer Programming. Addison-Wesley, Reading MA, second edi-
tion.

Kollios, G., Gunopulos, D., and Tsotras, V. J. (1999a). Nearest neighbor
queries in a mobile environment. In Proc. International Workshop on
Spatio- Temporal Database Management, LNCS 1678, pages 119 134.

Kollios, G., Gunopulos, D., and Tsotras, V. J. (1999b). On indexing
mobile objects. In Proc. ACM Symp. Principles of Database Systems,
pages 261-272.

Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., and Protopapas, Z.
(1996). Fast nearest neighbor search in medical image databases. In
Proc. International Conf. on Very Large Databases, pages 215 226.

Koutsoupias, E. and Taylor, D. S. (1998). Tight bounds for 2-
dimensional indexing schemes. In Proc. ACM Symp. Principles of
Database Systems, pages 52-58.

Kumar, V. and Schwabe, E. (1996). Improved algorithms and data
structures for solving graph problems in external memory. In Proc.
IEEE Symp. on Parallel and Distributed Processing, pages 169-177.

Leutenegger, S. T., Lépez, M. A., and Edgington, J. (1996). STR:
A simple and efficient algorithm for R-tree packing. In Proc. IEEE
International Conference on Data Engineering, pages 497 506.

Lomet, D. and Salzberg, B. (1990). The hB-tree: A multiattribute index-
ing method with good guaranteed performance. ACM Transactions
on Database Systems, 15(4):625—658.

Maheshwari, A. and Zeh, N. (1999). External memory algorithms for
outerplanar graphs. In Proc. Int. Symp. on Algorithms and Compu-
tation, LNCS 1741, pages 307-316.

www.manaraa.com



42

Maheshwari, A. and Zeh, N. (2001). I/O-efficient algorithms for bounded
treewidth graphs. In Proc. ACM-SIAM Symp. on Discrete Algorithms,
pages 89-90.

Matousek, J. (1992). Efficient partition trees. Discrete Comput. Geom.,
8:315 334.

McCreight, E. (1985). Priority search trees. SIAM Journal of Comput-
ing, 14(2):257-276.

Mehlhorn, K. (1984). Data Structures and Algorithms 1: Sorting and
Searching. Springer-Verlag, EATCS Monographs on Theoretical Com-
puter Science.

Mehlhorn, K. and Niher, S. (1990). Dynamic fractional cascading. Al-
gorithmica, 5:215-241.

Meyer, U. (2001). External memory bfs on undirected graphs with
bounded degree. In Proc. ACM-SIAM Symp. on Discrete Algorithms,
pages 87 88.

Morrison, D. R. (1968). PATRICIA: Practical algorithm to retrieve
information coded in alphanumeric. Journal of the ACM, 15:514-534.

Munagala, K. and Ranade, A. (1999). I/O-complexity of graph algo-
rithm. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages
687 694.

Nievergelt, J., Hinterberger, H., and Sevcik, K. (1984). The grid file:
An adaptable, symmetric multikey file structure. ACM Transactions
on Database Systems, 9(1):38-T71.

Nievergelt, J. and Reingold, E. M. (1973). Binary search tree of bounded
balance. SIAM Journal of Computing, 2(1):33 43.

Nievergelt, J. and Widmayer, P. (1997). Spatial data structures: Con-
cepts and design choices. In van Kreveld, M., Nievergelt, J., Roos, T.,
and Widmayer, P., editors, Algorithmic Foundations of GIS, pages
153-197. Springer-Verlag, LNCS 1340.

Nodine, M. H., Goodrich, M. T., and Vitter, J. S. (1996). Blocking for
external graph searching. Algorithmica, 16(2):181 214.

Orenstein, J. (1986). Spatial query processing in an object-oriented
database system. In Proc. ACM SIGMOD Conf. on Management of
Data, pages 326-336.

www.manaraa.com



BIBLIOGRAPHY 43

Orenstein, J. (1990). A comparison of spatial query processing tech-
niques for native and parameter spaces. In Proc. SIGMOD Intl. Conf.
on Management of Data, pages 343-352.

Overmars, M. H. (1983). The Design of Dynamic Data Structures.
Springer-Verlag, LNCS 156.

Overmars, M. H. (1985). Range searching in a set of line segments. In
Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 177-185.

Papadopoulos, A. and Manolopoulos, Y. (1997). Performance of nearest
neighbor queries in R-trees. In Intl. Conference on Database Theory,
LNCS 1186, pages 394 408.

Pfoser, D., Jensen, C. S., and Theodoridis, Y. (2000). Novel approaches
to the indexing of moving objects trajectories. In Proc. International
Conf. on Very Large Databases, pages 395—406.

Ramaswamy, S. (1997). Efficient indexing for constraint and temporal
databases. In Proc. International Conference on Database Theory,
LNCS 1186, pages 419 431.

Ramaswamy, S. and Subramanian, S. (1994). Path caching: A technique
for optimal external searching. In Proc. ACM Symp. Principles of
Database Systems, pages 25—35.

Robinson, J. (1981). The K-D-B tree: A search structure for large
multidimensional dynamic indexes. In Proc. SIGMOD Intl. Conf. on
Management of Data, pages 10 18.

Roussopoulos, N., Kelley, S., and Vincent, F. (1995). Nearest neighbor
queries. In Proc. SIGMOD Intl. Conf. on Management of Data, pages
71-79.

Roussopoulos, N. and Leifker, D. (1985). Direct spatial search on picto-
rial databases using packed R-trees. In Proc. SIGMOD Intl. Conf. on
Management of Data, pages 17 31.

Ruemmler, C. and Wilkes, J. (1994). An introduction to disk drive
modeling. IEEE Computer, 27(3):17-28.

Salzberg, B. and Tsotras, V. J. (1999). A comparison of access methods
for time evolving data. ACM Computing Surveys, 31(2):158 221.

Samet, H. (1990a). Applications of Spatial Data Structures: Computer
Graphics, Image Processing, and GIS. Addison Wesley, MA.

www.manaraa.com



44

Samet, H. (1990b). The Design and Analyses of Spatial Data Structures.
Addison Wesley, MA.

Samoladas, V. and Miranker, D. (1998). A lower bound theorem for in-
dexing schemes and its application to multidimensional range queries.
In Proc. ACM Symp. Principles of Database Systems, pages 44-51.

Sanders, P. (1999). Fast priority queues for cached memory. In Proc.
Workshop on Algorithm Engineering and FExzperimentation, LNCS
1619, pages 312-327.

Sarnak, N. and Tarjan, R. E. (1986). Planar point location using per-
sistent search trees. Communications of the ACM, 29:669-679.

Seeger, B. and Kriegel, H.-P. (1990). The buddy-tree: An efficient and
robust access method for spatial data base systems. In Proc. Interna-
tional Conf. on Very Large Databases, pages 590—-601.

Seidl, T. and Kriegel, H.-P. (1997). Efficient user-adaptable similarity
search in large multimedia databases. In Proc. International Conf. on
Very Large Databases, pages 506—-515.

Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). The R*-tree: A
dynamic index for multi-dimensional objects. In Proc. International
Conf. on Very Large Databases, pages 507-518.

Snoeyink, J. (1997). Point location. In Goodman, J. E. and O’Rourke,
J., editors, Handbook of Discrete and Computational Geometry, chap-
ter 30, pages 559-574. CRC Press LL.C, Boca Raton, FL.

Sproull, R. F. (1991). Refinements to nearest neighbor searching in k-
dimensional trees. Algorithmica, 6(4):579-589.

Subramanian, S. and Ramaswamy, S. (1995). The P-range tree: A new
data structure for range searching in secondary memory. In Proc.
ACM-SIAM Symp. on Discrete Algorithms, pages 378-387.

Tamassia, R. and Vitter, J. S. (1996). Optimal cooperative search in
fractional cascaded data structures. Algorithmica, 15(2):154-171.

Tayeb, J., Ulusoy, O., and Wolfson, O. (1998). A quadtree-based dy-
namic attribute indexing method. The Computer Journal, 41(3):185—
200.

Ullman, J. D. and Yannakakis, M. (1991). The input/output complex-
ity of transitive closure. Annals of Mathematics and Artificial Intel-
legence, 3:331-360.

www.manaraa.com



BIBLIOGRAPHY 45

Vahrenhold, J. and Hinrichs, K. H. (2000). Planar point-location for
large data sets: To seek or not to seek. In Proc. Workshop on Algo-
rithm Engineering.

van den Bercken, J., Seeger, B., and Widmayer, P. (1997). A generic
approach to bulk loading multidimensional index structures. In Proc.
International Conf. on Very Large Databases, pages 406—415.

van den Bercken, J., Seeger, B., and Widmayer, P. (1998). A generic
approach to processing non-equijoins. Technical Report 14, Philipps-
Universitat Marburg, Fachbereich Matematik und Informatik.

van Kreveld, M. J. and Overmars, M. H. (1991). Divided k-d trees.
Algorithmica, 6:840-858.

Varman, P. J. and Verma, R. M. (1997). An efficient multiversion access
structure. IEEFE Transactions on Knowledge and Data Engineering,

9(3):391 409.

Vengroff, D. E. and Vitter, J. S. (1996). Efficient 3-D range searching in
external memory. In Proc. ACM Symp. on Theory of Computation,
pages 192 201.

Vitter, J. S. (1999a). External memory algorithms and data structures.
In Abello, J. and Vitter, J. S., editors, Fzternal Memory Algorithms
and Visualization, pages 1 38. American Mathematical Society, DI-
MACS series in Discrete Mathematics and Theoretical Computer Sci-
ence.

Vitter, J. S. (1999b). Online data structures in external memory. In
Proc. Annual International Colloguium on Automata, Languages, and
Programming, LNCS 1644, pages 119 133.

Vitter, J. S. and Shriver, E. A. M. (1994). Algorithms for parallel mem-
ory, I: Two-level memories. Algorithmica, 12(2-3):110-147.

Saltenis, S., Jensen, C. S., Leutenegger, S. T., and Lépez, M. A. (2000).
Indexing the positions of continuously moving objects. In Proc. SIG-
MOD Intl. Conf. on Management of Data, pages 331-342.

White, D. A. and Jain, R. (1996). Similarity indexing with the SS-tree.
In Proc. IEEE International Conference on Data Engineering, pages
516-523.

Wolfson, O., Sistla, A. P., Chamberlain, S., and Yesha, Y. (1999). Up-
dating and querying databases that track mobile units. Distributed
and Parallel Databases, 7(3):257-287.

www.manaraa.com



46

Wolfson, O., Xu, B., Chamberlain, S., and Jiang, L. (1998). Moving
objects databases: Issues and solutions. In Intl. Conf. on Scientific
and Statistical Database Management, pages 111-122.

Zeh, N. (2001). TI/o-efficient planar separators and applications.
Manuscript.

Zhang, D., Markowetz, A., Tsotras, V., Gunopulos, D., and Seeger, B.
(2001). Efficient computation of temporal aggregates with range pred-
icates. In Proc. ACM Symp. Principles of Database Systems, pages
237-245.

www.manharaa.com




